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Stream Processmg 1n IoT-Scenarios & Initial Operator Placement

Motivation
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Heterogeneous Hardware & Network

Main Contributions & Core Ideas

Overview Transferable Input Learning Placement Costs with

COSTREAM is a learned cost model that predicts the execution Representation Graph Neural Networks
costs for an initial operator placement on heterogeneous The query operators, hardware resources and data Placement costs are learned with a novel two-

hardware. o streams are modeled in a joint graph and stage learning approach that first embeds the
COSTREAM paves the road for cost based optimization of assigned with transferable features. node features into hidden states and then applies

stream processing systems. In this work, we use cost - novel neural message vassing scheme
estimates to reason about the optimized initial operator gep g :
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Experimental Evaluation

How good are cost predictions from  How good are the initial placements provided What are benefits of cost-based
COSTREAM? by COSTREAM? placement optimization?

. Method: Method: Optimize initial heuristic placements based on [2] with COSTREAM and Method: Compare initial placement from

Test predictions for unseen hardware that differs from Baseline COSTREAM versus an online scheduling
initial training data. better o4 a4 approach [1]
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