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| Stream Processing in IoT-Scenarios

Query: Analyze air pollution levels in cities and provide timely alerts to residents
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| Why the Initial Placement Matters

Initial placement Optimized placement
—~ T
L — COSTREAM
é 300 X Monitoring Placement (ours)
- overhead of 72s Online
% — Scheduler [1]
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[1]: Aniello, et al. "Adaptive online scheduling in storm." DEBS 13. 8



| Issues of Related Work

~ Online placement ® Heuristic-based placement [z @ Learned placement 3]
X Long monitoring period X Assume hardware homogeneity X No generalization to unseen
X Rescheduling downtime X Inaccurate > sub-optimal hardware, data & queries
X High initial cost placements ! Especially required in IoT

3. Provide
Generalizabilty

2. Predict placement
costs for heterogeneous
hardware accurately

1. Enable initial
placement

Research gaps

Goal: Finding an initial optimized placement that is generalizable

[1]: Aniello, et al "Adaptive online scheduling in storm.” DEBS 13.
[2]: Imai, et al "Maximum sustainable throughput prediction for data stream processing over public clouds." CCGRID 2017
[3]: Sun et al "An end-to-end learning-based cost estimator.” VLDB 2019




| COSTREAM: A Novel Learned Cost Model

Input representation Cost Model Cost Predictions
Latency, Throughput,
Data Streams — Backpressure, ...
Source 1 Filter Query ]
| Source 2 >| Join Aggregation Sink COSTREAM

Host A Host B * > > »[ L,=932ms ]h

L P
Host C Host D eg. fl.nd
Hardware __( ) optimized

J St = = fatency
—J

- COSTREAM enables cost-based optimization for DSPS.
- There is no offline cost model for stream processing yet.

- This work: Placement optimization
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| Transferable Input Representation

Source 1 = Filter
Cource 2 §| Join |=» Aggregation = Sink
Novel S
joint graph Host A Host B
representation ﬁ:}r—_'
Host C Host D
’ |
B Hardware-related ‘© Operator-related | | 1 Data-related
Transferable CPU: 4 cores Window length Event rate
RAM: 1024MB Window Type Selectivity
features Bandwidth: 20Mb/s
Latency: 5ms

GNN
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| Learning Placement Costs with GNN

Neural Encoding

1. Message passing from

Novel Neural Message Passing

2. Message passing from

operators to hosts hosts to operators

Source 1 Filter Source 1 Filter

Transferable Features Encodings
CPU: 4 cores [0.79]
RAM: 1024MB Host [0.50]
Bandwidth: 20Mb/s Encoder [0.002]
Latency: 5ms

Join
Encoder

Source
Encoder

Host A Host A

3. Message passing through operator chain

Source 1 Filter
! Joi Agg. Sink
Soukce 2 (_Join_}+{_Agg. }+{_Sink J
Predicted Costs
Throughput: 234ev/s,
_ E2E-Latency: 21ms
Final MLP
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| 1. How good are cost predictions from
COSTREAM?

+ Method: 100 -
Test predictions for unseen ]
hardware that differs from
initial training range..

25,33

16,63 17,78

« Example:
Training - RAM:
2, 4, 8 ,.
Evaluation - RAM:
3, 6, 12, .

10

Median Q-Error

1,59 1,54

1,37

* Metric: q
Deviation of real and Throughput E2E-Latency Processing Latency

grg;gfd costs with median = COSTREAM ®Flat Vector Baseline

" = max (X X
Q(x,x") = max(x,, x)

More Experiments : Unseen query types and data streams - in the paper

Accurate predictions for unseen hardware
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| 2. How much COSTREAM benefits from
modeling heterogeneous hardware?

83.54
2.6

53.04
) 2.22

' o 7—Z Q50
CPU: cores
RAM: i024MB 137 - Q95
Bandwidth: 20Mb/s
Latency: 5ms

1 10 100

Q-Error

Precise hardware modeling is highly beneficial
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3. How good are the initial placements
provided by COSTREAM?

(op
0]
=
0]
=

21.34

< 20 BN COSTREAM

134
8.33
2.71 2.58 191 M
Varam

Linear Linear 2-Way-Join 2-Way-Join 3-Way-Join 3-Way-Join
Query Query Query Query Query Query
with Aggregation with Aggregation with Aggregation

BN Flat Vector

16.27

1.05 1.03

o

Median latency
speed-up over [4]
o

COSTREAM returns placements with high speed-ups across query types

[4]: Chaudhary, et al “Governor: Operator Placement for a Unified Fog-Cloud Enrionment.” EDBT 20.
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4. What are benefits of cost-based placement
optimization?

C

< Online Placement
(@) 166x @ based on [1]

DI 100x A Event Rates (ev/s):  Selectivities:
= A 100 0.1
o A 200 0.25
—= A 400 ® 05
N 10x A A A 800 ® 075
o) O A 1600 ® 09
> ® A 3200 ® 10
= COSTREAM A 600

E 1x 4 (all queries)

0 20 40 60 80 100 120
Monitoring overhead (s)

High initial speed-ups of up Avoiding monitoring
to 166x overhead of up to 120s

[1]: Aniello, et al. "Adaptive online scheduling in storm." DEBS 13. 16



| Summary and Outlook

COSTREAM:

. ...1s a novel learned model for DSPS that predicts execution costs of the
initial placement

- ... shows advantages over monitoring approaches

. .. 1s designed for heterogeneous hardware resources

- ... generalizes to unseen queries, data streams and hardware
- ... paves the way for cost based DSPS optimization

Next Steps:

« Bring cost-based optimization to other DSPS tasks like operator
reordering

« Investigate generalizability across DSPS
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2

00
‘ X High initial costs ‘

BEm COSTREAM 444.03
BN Flat Vector

10 63.79

X Skew in
performance

Abstract—In this work, we present COSTREAM, a novel 10
learned cost model for Distributed Stream Processing Systems
that provides accurate predicti of the tion costs of
a streaming query in an edge-cloud environment. The cost
model can be used to find an initial placement of operators
across heterogeneous hardware, which is particularly important
in these environments. In our evaluation, we demonstrate that
COSTREAM can produce highly accurate cost estimates for

17.15

4 1328

Median Q-Error

137 150 2 141

Seen Unseen Unseen Unseen
queries hardware queries benchmark

the initial operator placement and even generalize to unseen
placements, queries, and hardware. When using COSTREAM to

ptimize the pl of str ing operators, a median speed-
up of around 21x can be achieved compared to baselines.

Fig. 1: Estimation errors when predicting E2E-latency for queries that
are similar to the training data (left) or entirely unseen in terms of
underlying hardware and other query properties (right). COSTREAM
can precisely predict query execution costs compared to an existing

cost model baseline (Flat Vector).

Processing Latency (ms)

0 25
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50 75
Execution Time (s)
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| Training Benchmark

Benchmark with 43.281 queries
« Various query templates

« Various data streams

« Various hardware resources

« Various placements based on
heuristics [3]

3-way-join
sink

t
{filter}
+

aggregate

{group-by}
t
windowed join

—
windowed joi\
N

{filter}  {filter} {filter}
t t t

source source source

[3] Chaudhary et al, “Governor: Operator placement for a unified fog-cloud environment,” EDBT 2020
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| Transferable Features

Node Category Feature Description
data tuple width in Averaged incoming tuple width

all , - .
data tuple width out Outgoing tuple width

I data input event rate Event rate emitted by the source
data tuple data type Data type for each value in tuple
operator filter function Comparison function

filter operator literal data type Data type of comparison literal
data selectivity see Definition 6

g operator join-key data type Data type of the join key

join ol i\
data selectivity see Definition 7
operator agg. function Aggregation function

agg. operator group-by data type Data type of group-by attribute
operator agg. data type Data type of each value to aggregate
data selectivity see Definition 8
operator window type Shifting strategy (sliding/tumbling)

: operator window policy Counting mode (count/time-based)

window , . . :
operator window size Size of the window
operator slide size Size of the sliding interval
hardware cpu Available CPU resources in %
hardware ram Available RAM resources in MB

hardware : z
hardware network-latency Outgoing latency of the host in ms
hardware network-bandwidth Outgoing bandwidth of the host in Mbit/s

21




| Feature Range of Benchmark

Feature Training data range
cpu [50, 100, 200, 300 400, 500, 600, 700, 800] % of a core
ram [1000, 2000, 4000, 8000, 16000, 24000, 32000] MB

network bandwidth
network latency

[25, 50, 100, 200, 400, 800, 1600, 3200, 6400, 10000] MBits
[1, 2, 5, 10, 20, 40, 80, 160] ms

input event rate (linear)
input event rate (two-way)
input event rate (three-way)
tuple data type

[100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600] ev/s

[50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000] ev/s
[20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] ev/s
[3..10] X [int, string, double]

filter function
literal data type

<,>,<=, >=, !=, startswith, endswith
int, string, double

window type

window policy
window size (count)
window size (time)
slide size

sliding, tumbling

count-based, time-based

[5, 10, 20, 40, 80, 160, 320, 640] tuples
[0.25, 0.5, 1, 2, 4, 8, 16] sec

[0.3 ... 0.7] X window length

join-key data type

int, string, double

agg. function
group-by data type

min, max, mean, avg
int, string, double, none
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| Query Examples

Linear Query 2-way-join 3-way-join
sink sink sink

t t U

{filter} {filter} {filter}

t t g
windowed aggregate aggregate
aggregate {group-by} {grOUfP- by}

{group-by} I windowed join

windowed join windowed joi\

{filter}  {filter}  {filter} {filter}  {filter} {filter}
1 r b vt

source source source source source source

source — {filter} < \windowed
> join \\ windowed . aggregate

source — {filter
{ ; join {group-by}

— {filter} — sink

source — {filter}
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| Optimization Procedure

(D Describe query operators and hardware nodes with transferable features

[ Source 1 H Filter

[ Host A ][ Host B ]

Join

Sink

\ 4

Aggregation

(@ Enumerate £ heuristic

[ Host C ][ Host D ]

candidates for given query and predict costs for each

)
A}
[U L,=213ms, S=True, Ry,=False ]

COSTREA

)
» » ‘
> > L,=932ms, S=False, Ry,=True ]
9

A
A}
[U L,=53ms, S=False, Ry,=True ]

(3 Identify optimal placement candidate (
\ L,=53ms, .. l

}.'-—'*'-':c»:»c.

] Select candidates
5 Average L, )
] » majority vote IS
L,=932ms , .. ] for S and R S=True
[[[ W © Ro=False

Optimized placement
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| Placement heuristics

Placement enumeration: Based on published heuristics [3]
(D) Co-location  (2) Increasing computing capability (3 Acyclic placements

Host A Host A 4>| Host B l
[:l ) 3

Host A £ Host B £ Host C

[3] Chaudhary et al, “Governor: Operator placement for a unified fog-cloud environment,” EDBT 2020 25



| General Prediction Accuracy

Hardware properties

d....J....m.I

Median
Q Error

Accuracy
(%)

1.0

(92
o

o

CPU (%)

A End-To-End-Lat.

]
E=S Processing-Lat ESEN Throughput 1.0

E== Query Success

RAM (MB)

O O N
LSS
u@@t@“‘*

Median
Q-Error

Accuracy
(%)
3

Linear
Query

Bandwidth (mblt/s) Latency (ms)

COSTREAM

100 a
0

Query Type

Processing-Lat EEN Throughput

A End-To-End-Lat.

E= Query Success XN Backpressu% %

v
W

—_ N\ — N\
Linear 2-Way-Join 2-Way-Join 3-Way-Join 3-Way-Join
Query Query Query Query Query
with Aggregation with Aggregation with Aggregation
Query Type

FLAT VECTOR

Metric

Q50 Q95

Q50 Q95

Throughput
E2E-latency
Processing latency

1.33 5.60
1.37 13.28
146 13.90

992  590.34
2496  827.59
22.87 458.14

Backpressure
Query success

87.89 %
94.96 %

68.70%
76.85%
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| Few-Shot Learning Improves Results

3

10 10 45523
5.51

5 o 10> 6435

Lo 2.74 (o)) 21 81 EA initial

C o 101 BN retrained

1.68
138 1.61 1.61
1 - 10°
2-filter 3-filter 4-filter 2-filter 3 filter 4-filter

Re-Training COSTREAM with a few target queries for filter chains
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@ Extrapolation towards stronger resources

| Extrapolation Towards Hardware

RAM CPU Bandwidth Latency
(GB) (% of a core) (Mbit/s) (ms)
Training Range 12 4.8 16 50, 100, 200, 300, 25, 50, 100, 200, 5, 10, 20, 40,
e 400, 500, 600 300, 800, 1.6k, 3.2k 80, 160
Evaluation Range
Metric Q50 Q9 Q50 Q95 Q50 Q95 Q50 Q9%
Throughput 1.66 588 1.72 9.40 1.48 6.55 152 5.60
E2E-Latency 1.85 29.08 1.67 9.43 1.75 17.18 3.55 30.90
Processing Latency 1.88 11.32  1.75 6.81 1.63 13.89 3.83 1943
Backpressure 85.37% 86.59% 86.59% 88.89%
Query Success 77.00% 93.14% 87.25% 92.93 %
® Extrapolation towards weaker resources
RAM CPU Bandwidth Latency
(GB) (% of a core) (Mbit/s) (ms)
Training Range 4, 8, 16, 200, 300, 400, 100, 200, 300, 800, 1,2,5,10
24, 32 500, 600, 700, 800 1.6k, 3.2k, 6.4k, 10k 20, 40
Evaluation Range
Metric Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95
Throughput 1.79 760 1.61 13.16 142 5.30 325  33.65
E2E-Latency .72 13.69 2.75 111.53 1.46 5.30 210 54.13
Processing Latency 1.49 13.27 2.96 77.56 1.68 12.94 6.09 406.83
Backpressure 91.03% 75.00% 91.92% 67.82%
Query Success 78.79% 86.67 % 92.59% 74.51%




| Interpolation Results

® RAM CPU Bandwidth Latency
(GB) (% of a core) (Mbit/s) (ms)
1.2, 4.8, 50, 100, 200, 25, 50, 100, 200, 1. 2. 5. 10, 20,

Training Range 300, 400, 500, 300, 800, 1600,

16,2432 600, 700, 800 3200, 4800, 800 +0 80> 160
Evaluation Range
® COSTREAM Flat Vector
Metric Q50 Q95 Q50 Q95
Throughput 1.37 8.28 15.63 282.50
E2E-Latency 1.59 25.33 63.79 869.85
Processing Latency 1.54 17.78 27.85 282.50
Backpressure 88.04 % 72.83%
Query Success 87.13% 68.32%
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Extrapolation Towards Unseen Queries

@ [Exp 5] Unseen query pattern

2-Fiter Chain 3-Filter-Chain 4-Filter-Chain
COSTREAM FLAT VECTOR COSTREAM FLAT VECTOR COSTREAM FLAT VECTOR
Metric Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95
Throughput 274  64.35 552 24438 | 287 7529 18.82 107826 | 5.51 44587 8271 3672.13
E2E-Latency 1.68 21.81 25998 2302.38 | 2.15 11.81 536.38 1855.05 | 2.68 23.99 538.10 1877.68
Proc-Latency 1.69 48.26 4893 34170 | 1.64  5.41 63.62 266.80 | 1.61 5.38 55.27 270.36
Backpressure 88% 68% 85% 79% 82% 79%
Query success 100% 4% 100% 6% 100% 6%
® [Exp 6] Unseen benchmarks
Advertisement Spike Detection Sn(l:ll:bﬁ;ld Sm(?;ta(;’)"d
COSTREAM FLAT VECTOR COSTREAM FLAT VECTOR COSTREAM FLAT VECTOR COSTREAM FLAT VECTOR
Q50 Q95 Q50 Q95 Q50 Q05 Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95 Q50 Q95
1.98 1101 3.12 46.11 3.67 66.48 274.04 891.99 144 5.98 104.79 106.06 | 1.43 10.51 104.79 106.12
2.02 1508 1.32 40.59 141 1755 2.28 1017.96 | 2.01 50.17 118.77 639.79 | 1.67 31.00 14322 669.20
227 1501 3.62 41.37 1.63 1292 5.32 339.82 148 12.70 35.48 161.60 | 1.54 7.96 37.57 174.38
85% 80% 78% 55% 81% 29% 86% 23%
100% 100% 100% 0% 100% 100% 100 % 100%
3
10 10 455.23
5.51
2
S 5 o 10 64.35
To) 274 8 21.81 ERA initial
o 101 BN retrained
138 1.68 1.61 1.61 2 41 412
; 1.74 :
0
1 _ . . 10 . . . 30
2-filter 3-filter 4-filter 2-filter 3-filter 4-filter




| Ablation Studies

Query 83.54
ST USSR
Throughput trad 55 E ggg é Nodes 2.6
ours SN NTRNENINENIND 5 _ S .hw 53.04
rad >SS SSSSSSNNN S Nodes 299
Proc.-Latency =
ours PSSRSO NN 139 § + HW . =7 Q50
rad oS e N N NN N NN 27 21 Features 7 | 1.37 N Q95
E2E-Latency gurs SOSISNONONONONONENONININN 13.28 . 1 )
' 10 10 10
10° 10" Q-Error Q-Error
Message passing scheme Featurization
<
- Q50 ® Q9 O
© 100 E 2000
L
& 10 8
1 g0
3 4
10> 10° 10° 10
Size of Dataset Size of Dataset

Learning Curve
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| Query execution length

) Input Rate
—_ 7 - —_ M X 2000 ev/s
g - : : m \L-n’ : -+ 4000 ev/s
)
3 ) o 100 - v 6000 ev/s
- — : Y 8000 ev/s
> : (@)
a4 <
g’ 3- ﬁ -1 -
o v 10 :
< }\ o
[ [a
2 i 1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
Query execution length (min) Query execution length (min)
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| Query execution costs over load

X 25.0% + 50.0% v 75.0% + 100.0%

— —_ 40_
g 3000 - 2
:‘Pj © 30-
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2 2000 % 20 -
[@)] n
2 S lo-
£ 1000 - o
[ o
O_I
leb
—~ 0
£ 100- #
© g
— ©
o] I
C .
s g
C O
L ©
0- m 0, 5
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Source Event Rate (ev/s)
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