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Why the Initial Placement Matters
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❌Monitoring 
overhead of 72s

❌ High initial costs

❌ Skew in 
performance

Initial placement Optimized placement

[1]: Aniello, et al. "Adaptive online scheduling in storm." DEBS `13.

(ours)



Research gaps

Issues of Related Work
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📈 Online placement [1]

❌ Long monitoring period 
❌ Rescheduling downtime 
❌ High initial cost

Goal:  Finding an initial optimized placement that is generalizable

🤖 Learned placement [3]

❌ No generalization to unseen 
hardware, data & queries
⚠ Especially required in IoT

⚙ Heuristic-based placement [2]

❌ Assume hardware homogeneity
❌ Inaccurate à sub-optimal 

placements

3. Provide
Generalizabilty

1. Enable initial
placement

2. Predict placement 
costs for heterogeneous 

hardware accurately 

[1]: Aniello, et al. "Adaptive online scheduling in storm." DEBS `13.
[2]: Imai, et al.  "Maximum sustainable throughput prediction for data stream processing over public clouds." CCGRID 2017 
[3]: Sun et al. "An end-to-end learning-based cost estimator." VLDB 2019
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COSTREAM: A Novel Learned Cost Model
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COSTREAM

Lp=932ms

Cost Predictions
Latency, Throughput, 

Backpressure, …

Input representation Cost Model

Host A Host B

Host C Host D

Source 1

AggregationJoin

Filter

Source 2 Sink

Hardware

Query
Data Streams

• COSTREAM enables cost-based optimization for DSPS.
• There is no offline cost model for stream processing yet.
• This work: Placement optimization

e.g. find 
optimized 

latency



Transferable Input Representation
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Host A Host B

Host C Host D

Source 1

AggregationJoin

Filter
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Novel 
joint graph 
representation

⚙ Operator-related
Window length
Window Type
….

💾 Data-related
Event rate
Selectivity
…

🖥 Hardware-related
CPU: 4 cores
RAM: 1024MB
Bandwidth: 20Mb/s
Latency: 5ms

Transferable 
features

GNN



Learning Placement Costs with GNN 
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1. Message passing from 
operators to hosts

Host A

Source 1 Filter

2. Message passing from 
hosts to operators

3. Message passing through operator chain

Host A

Source 1 Filter

Predicted Costs
Throughput: 234ev/s, 
E2E-Latency: 21ms

Final MLP

Source 1
Agg.Join

Filter

Source 2
Sink

Host
Encoder

Source
Encoder

Join 
Encoder

……

… …

[0.79]
[0.50]
[0.002]

…

Transferable Features Encodings

Neural Encoding Novel Neural Message Passing

CPU: 4 cores
RAM: 1024MB
Bandwidth: 20Mb/s
Latency: 5ms



1. How good are cost predictions from 
COSTREAM?
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More Experiments : Unseen query types and data streams à in the paper

• Method: 
Test predictions for unseen
hardware that differs from 
initial training range..

• Example:
Training - RAM:
2, 4,  8 ,…
Evaluation - RAM:  
3, 6, 12, …

• Metric:
Deviation of real and 
predicted costs with median 
Q-Error: 

𝑄 𝑥, 𝑥′ = max
𝑥
𝑥′
,
𝑥′
𝑥 ✅ Accurate predictions for unseen hardware

1,37 1,59 1,54

16,63
25,33

17,78

1

10

100

Throughput E2E-Latency Processing Latency

COSTREAM Flat Vector Baseline
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2. How much COSTREAM benefits from 
modeling heterogeneous hardware?

14

✅ Precise hardware modeling is highly beneficial

1 10 100

CPU: 4 cores
RAM: 1024MB
Bandwidth: 20Mb/s
Latency: 5ms



3. How good are the initial placements 
provided by COSTREAM?
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✅ COSTREAM returns placements with high speed-ups across query types
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[4]: Chaudhary, et al. “Governor: Operator Placement for a Unified Fog-Cloud Enrionment." EDBT  `20.

better



4. What are benefits of cost-based placement 
optimization?

16[1]: Aniello, et al. "Adaptive online scheduling in storm." DEBS `13.

✅ Avoiding monitoring 
overhead of up to 120s

Online Placement
based on [1]

✅ High initial speed-ups of up 
to 166x

100x



Summary and Outlook
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COSTREAM:
• … is a novel learned model for DSPS that predicts execution costs of the 

initial placement
• … shows advantages over monitoring approaches
• … is designed for heterogeneous hardware resources
• … generalizes to unseen queries, data streams and hardware
• … paves the way for cost based DSPS optimization

Next Steps:
• Bring cost-based optimization to other DSPS tasks like operator 

reordering
• Investigate generalizability across DSPS



Questions?
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Back-Up Slides
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Training Benchmark
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Benchmark with 43.281 queries
• Various query templates
• Various data streams
• Various hardware resources
• Various placements based on 

heuristics [3]

[3] Chaudhary et al., “Governor: Operator placement for a unified fog-cloud environment,” EDBT 2020
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Transferable Features
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Feature Range of Benchmark
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Query Examples
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Optimization Procedure
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② Enumerate k heuristic placement candidates for given query and predict costs for each

① Describe query operators and hardware nodes with transferable features

Host B

Host C

Host A

Host D

…

③ Identify optimal placement candidate

…
Lp=53ms ,…

Select candidates 
where: 
S=True 
RO=False

Optimized placement

Source 1
AggregationJoin

Filter

Source 2
Sink

Lp=53ms,…

…

COSTREA
MCOSTREA
MCOSTREA
M

Lp=213ms, S=True, RO=False

Lp=932ms, S=False, RO=True

Lp=53ms, S=False,  RO=True

Lp=53ms ,…Lp=53ms ,…

Lp=53ms ,…Lp=53ms ,…Lp=213ms ,…

Lp=53ms ,…Lp=53ms ,…Lp=932ms ,…

Average Lp,
majority vote 
for S and RO

Lp=53ms, S=False,  RO=TrueLp=53ms, S=False,  RO=True

Lp=932ms, S=False, RO=TrueLp=932ms, S=False, RO=True

Lp=213ms, S=True, RO=FalseLp=213ms, S=True, RO=False



Placement enumeration: Based on published heuristics [3]

Placement heuristics
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② Increasing computing capability① Co-location ③ Acyclic placements

Host BHost A Host C

Host A

Host C

Host B

Host D
?✗

✓
Host A

Host A ≤ Host B ≤ Host C✓

✓✓

[3] Chaudhary et al., “Governor: Operator placement for a unified fog-cloud environment,” EDBT 2020



General Prediction Accuracy
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Hardware properties
Query Type



Few-Shot Learning Improves Results
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Re-Training COSTREAM with a few target queries for filter chains



Extrapolation Towards Hardware
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Interpolation Results
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Extrapolation Towards Unseen Queries
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Ablation Studies
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FeaturizationMessage passing scheme

Learning Curve



Query execution length
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Query execution costs over load
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