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Cost models for DSPS
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X No generalization possible 4 Generalization to unseen streams, queries
ing f _ and hardware
X Costly re-training for a new workload is [ Source Event rate: 512 ev/s
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Transferable features Training & inference methodology

Non-transferable features Transferable features .
Generate training data

region: “europe” event_rate: 312ev/s
vid_clicks : “231" selectivity: 0.9 Enumerate operator properties Enumerate query structures
Create a broad data set For filter, aggregation, join, window Linear query, 2-way-join, 3-way-join

X rely on given workload .4 workload-agnostic by enumeration

Example — window: Enumerate workload properties
window_type: sliding, tumbling Different event rates & tuple widths

: Execute queries and w@ndow_policy: count-based, time-based
))) W]_ndowed ﬂlter collect costs (labels) window_length: [3...100] tuples, [0.25...3] sec S EA e e
aggregation Different CPU & RAM sizes
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Operator-related features Data-related features Hardware-related features _
window type: sliding selectivity: 0.66 instance size: large Inference Train GNN

window policy: time tuple width in: 5 Unknown workload msp %, m) Cost estimation

window length: 60min tuple width out: 5

Selectivity definitions — paper Large: 8CPU, 8GB RAM, 80GB disk 4 GNN & graph representation allow predictions for flexible & unseen queries

Evaluation on zero-shot models

Set-up: 10 clusters (each 10 nodes) Extrapolation for unseen benchmarks (DSPBench)) Extrapolation for unseen query structures Extrapolation for unseen data streams & operator properties
with Apache Storm v2.2.0
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q(c, ¢)=max(c/¢&, ¢/c)

o reporting median and
95_percenti1e Spike Detection 1.01 1.04 1.73 194 4-way joins 1.95 2430 | 1.33 20.79

A ]
~ Y Papaparare
Advertisement (join) 1.99 2.06 1.55 2.16 4-filter chain | 7.33 5468 | 3.94 59.73 **.‘.-.i.:* ~ . .—. ..' ‘_’

0

o

Median Q-Error
=

Throughput

o q=1:perfect estimate Smart Grid (local) 1.21 123 | 1.92 192 5-wayjoins | 191 26.67 | 1.35 21.87 5 ‘

N

Smart Grid (global) 1.20 166 | 191 191 t#&&‘%ﬁ*—‘—x- 404t amoanetas 0

I:;;ilgglea;::n for workloads & 10 20 3 1000 5000°0 2 4 6 Y&l 0 100 200 300 400
P edian 95th nr. of values v/sec sec nr. of tuples
Latency: 3.19

Throughput: 6] 3.50 Increase accuracy by few-shot learning High accuracy for unseen values

(e
[e]

Conclusion & outlook
Our zero-shot cost model... Open questions on zero-shot models:

e IS geperalizable a_nd wor.kl.oad independent e How to model hardware properties more precisely?
e .requiresan one-time training effort How to featurize co-location of operators?
e ..predicts accurately and robustly for seen & unseen workloads e How to make use of the cost model in specific optimization tasks like

4 can be used as a main building block in DSPS optimization tasks providing elasticity?
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