
Learned Cost Models for Query Optimization:
From Batch to Streaming Systems

Manisha Luthra Agnihotri

TU Darmstadt & DFKI

Roman Heinrich

TU Darmstadt & DFKI

Xiao Li

ITU Copenhagen

Zoi Kaoudi

ITU Copenhagen

Presenters

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Add picture

Add picture

Dr. Manisha Luthra Agnihotri

Roman Heinrich

Prof. Zoi Kaoudi

Dr. Xiao Li

Athene Young Investigator (TU Darmstadt)

& Deputy Head (DFKI GmbH)

Research focus:

PhD Student

(TU Darmstadt and DFKI GmbH)

Research focus

• AI-enhanced streaming systems

• Multimodal streaming

• Benchmarking AI-enhanced streaming

• Learned cost models &

• Query optimization of data systems

2

Associate Professor

(IT University of Copenhagen)

Research focus:

• ML-based query optimization

• Cross-engine data systems

Postdoc

(IT University of Copenhagen)

Research focus

• Query optimization with ML

• Data cleaning with ML

Why this Tutorial?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Spoiler: Batch systems

No unified (batch & stream systems)

overview of Learned Cost Models for

query optimizers yet!

Heinrich R, Luthra M, Wehrstein J, Kornmayer H, Binnig C: How Good are Learned Cost Models, Really?

Insights from Query Optimization Tasks, SIGMOD 2025

3

What are Batch and Stream Systems?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Data

Base

DBMSQuery Answers

Database Management System

Query

Base

DSMSData Answers

Data Stream Management System

4

Differences in workloads mean very

different requirements for learned cost models

Emergence of Learned Cost Models

5Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

DB

Scan T1

Ⓐ Workload

Generation Ⓑ Execution Ⓒ Feature & Label Extraction

SELECT * FROM …
SELECT * FROM …
SELECT * FROM …

Scan T2

Join 2302ms

Ⓓ Training Phase

01100011011011010

101111100010010

01100011011011010

101111100010010

Sample BitmapsData Characteristics

Training

data
Learned

Cost Model

Ⓔ Evaluation Phase

SELECT * FROM …
SELECT * FROM …
SELECT * FROM …

SELECT * FROM …
SELECT * FROM …
SELECT * FROM …

Query Plans Query Runtimes

2302ms2302ms
Q50: 1.32

RMSE: 42s

Test

data

- Learned cost models: powerful tool overcoming limitations of traditional cost models

- Key Idea: Instead of relying on hand-crafted analytical models, let data and ML

guide the estimation

Heinrich R, Luthra M, Wehrstein J, Kornmayer H, Binnig C: How Good are Learned Cost Models, Really?

Insights from Query Optimization Tasks, SIGMOD 2025

Learned Cost Model

in General
Learned Cost Model

for Query Optimization

Runtime:

5 sec
Runtime:

10 sec

σ

⨝

⨝

⨝

σ

>

Our Tutorial: Cost Models (in) Query Optimizers

For both Batch and Streaming Systems

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Runtime:

10 sec

6

Agenda

− LCMs in Batch Systems

− LCMs in Streaming Systems

− Road Ahead

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
7

Agenda

− LCMs in Batch Systems

− LCMs in Streaming Systems

− Road Ahead

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
8

What’s the ingredients of Learned Cost Models?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Learned Cost Model

9

Learned Cost Models Ingredients

ML Model

Featurization

Scan T1 Scan T2

Join

Query Plans

1101010 1010101

0101010

Training data collection

2302ms

Query Runtimes

2302ms2302ms

Featurization

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

10

What features can we build?

− Query Encoding

− Plan Encoding

− Cardinality/Cost Estimates

− DB Statistics

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
11

Query encoding

− Given a query SQL statement, convert it into a feature vector, e.g.,

[0, 0, 1, …, 1, 0, 0.25, 0.73, 1, 0, 0, 0, …….]

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

12

Elements in a query

− Major elements in a query to consider
• tables, columns, predicates, joins, aggregator (group by) /sorter (order by)

− Most of these elements are categorical variables
• one-hot

• multi-hot

• learnable embedding

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

13

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

Encode elements of a query

Tables/columns: one-hot/multi-hot encoding

• table set: [A, B, C, D] => table “A”: [1, 0, 0, 0]

• column set: [A.a, A.b, A.c, B.a, …] => column “A.a”: [1, 0, 0, 0, ….]

• if multiple tables/columns are involved, multi-hot is used

• [A, B] => [1, 1, 0, 0]

• [A.a, A.c] => [1, 0, 1, 0, 0, 0, …]

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
14

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

Encode elements of a query

Predicates (<column, predicate operator, value> triplet): e.g., “A.a < 51”

• concatenate: one-hot column + one-hot operator + value, or

• directly one-hot encode the existence of a column predicate

• obtain estimated selectivity of column predicates with histogram or bitmap

− e.g., “[1, 0, 0, 0, …, 1, …]” replaced by “[0.55, 0, 0, 0, …, 0.76, …]”

• semantic embedding: map a predicate to an embedding vector

A.a | A.b | A.c | B.a | …

1 0 0 0 …

column predicates

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
15

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

Encode elements of a query

− Joins: e.g., “A.a = B.a”
• directly one-hot encode the joins: [0,1]

• concatenate “a”, “A”, and “B”’s representation

• embedding

− Groupby or Orderby operators

• boolean indicator: 0/1 => the sql includes the operator or not

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
16

Encode a query

Encode a query:
• use element features individually

Featurization

Andreas Kipf et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. CIDR 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

• or concatenate the representation of considered elements

There is no consideration of the query/join graph structure!

17

Encode a query

Join graph: a table as a node and a join (e.g., A.a = B.a) as an edge

Featurization

Ryan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019. Tianyi Chen et al. LOGER: A Learned Optimizer Towards Generating

Efficient and Robust Query Execution Plans. VLDB2023.

.

Adjacency matrix

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Graph embedding

Embed the structure info of join graph into the query encoding!

18

Plan encoding

DBMS execute the query as per a tree-structured query plan.

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

It is the execution plan that determines the cost of executing a query!

……

runtime: 12235 msruntime: 13 ms

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

runtime: 65242551 ms

HJ

MJ C

AB

scan index

scan

HJ

MJ A

BC

scan index

scan

HJ

LJ A

BC

scan scan

scan

……

19

How to encode a query plan

Major elements in a query plan:
− operators, e.g.,

− join operator: e.g., hash join(HJ), merge join (MJ), loop join (LJ)

− data access operator: e.g., index scan (index), seq scan (scan)

− aggregate (hash/stream)

− tables and columns to be joined

− join order: embodied by the tree structure in a bottom-up way

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

HJ

MJ C

AB

scan index

scan

20

How to encode a query plan

Procedures to encode a query plan:
1) encode the node:

• one-hot encode the operators

• aggregate other node features such as tables/columns (discussed before)

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

HJ

MJ C

AB

scan index

scan

HJ

MJ C

AB

scan index

scan

[1, 0, 0, 0, 0]

[0, 0, 0, 0, 1] [0, 0, 0, 1, 0]

[0, 1, 0, 0, 0]

[0, 0, 0, 0, 1]

21

How to encode a query plan

2) exploit the structure info (multiple choices).

− flatten it into a vector with tree traversing algorithm, e.g., depth first searching

− preserve the tree shape for the subsequent tree-based NN

− extend it to a more informative structure such as a graph

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

22

Examples of plan encoding

Flat vector

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

HJ MJ CB A

Pre-order traversal

HJ

MJ C

AB

scan index

scan

[1, 0, 0, 0, 0]

[0, 0, 0, 0, 1]

[0, 1, 0, 0, 0]

[0, 0, 0, 1, 0]

[0, 0, 0, 0, 1]

23

Examples of plan encoding

Vector tree

Featurization

Ryan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019.

Keep the tree structure and take it into

the subsequent tree neural network

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
24

Examples of plan encoding

Featurization

Graph

Besides the tree nodes, there

are more nodes like attributes

and tables.

Benjamin Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
25

Cardinality & cost estimates

− Obtain these estimates from traditional cost-based optimizer

− Incorporate these estimates into the plan encoding

Featurization

Ryan Marcus et al. Bao: Learning to Steer Query Optimizers. SIGMOD 2021.

Bao takes cardinality and cost

estimates into plan encoding

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
26

DB statistics

− Database statistics: histograms and sample bitmaps
• combine their usage with table/column encoding or predicate encoding

− Other statistical features from DB
• the number of rows in a table

• the number of unique values in a column

• the number of null values in a column

• ….

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
27

Feature selection:
• some features may be redundant such as

predicate encoding and cardinality
estimates

• query encoding only / plan encoding only
/ both encoding

Notes on featurization

Transferability in the features:

• DB-specific features such as
table/column name/identifier which
cannot transfer across DBs

• transferable features such as card./cost
estimates and statistics

Featurization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Plan encoding is often there!

28

Learned Cost Models Ingredients

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

Training data collection

ML Model

29

What kinds of models can we build?

− Regression task: the target is runtime (more common)

− The architecture of cost models are related to the shape of input features

− Cost model for flat features:
• FlatVector [1] leverage a regression tree model

• An multi-layer perceptron (MLP) even can do this task or more competent design,
e.g., MSCN [2]

ML Model

[1] Archana Ganapathi et al. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. ICDE 2009.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

[2] Andreas Kipf et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. CIDR 2019.

30

Cost models for tree-shape features

Cost model for tree-shape features:
• the model aims to capture the useful relations in the tree structure of the input

• the popular model architectures in LCMs: e.g.,

• treeLSTM

• treeCNN

• tree-based transformer

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

31

Cost models for tree-shape features

TreeLSTM

Each node in a plan

tree as a LSTM unit

and passing the state to

their parent node in

bottom-up way!

Ji Sun et al. An End-to-End Learning-based Cost Estimator. VLDB 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

32

Cost models for tree-shape features

TreeCNN

treeConv filters slide in the plan tree to get a

convolved representation of vector treeRyan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

dynamic

pooling

33

Cost models for tree-shape features

Tree-transformer

Height embedding similar to position

embedding in transformer records a

node’s position in a plan tree.

Yu Zhao et al. QueryFormer: A Tree Transformer Model for Query Plan

Representation. VLDB 2022.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

34

Cost models for graph-shape features

Cost model for graph-structured features: graph neural network (GNN)

bottom-up message passing

Benjamin Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

35

General LCMs vs. LCMs for query optimizer

Architecture differences

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

General LCMs vary in the

model architectures, while

LCMs for query optimizers

mostly use tree-CNN or

tree-LSTM!

36

General LCMs vs. LCMs for query optimizer

− Workflow differences
• General LCMs:

• follow typical “two-stage” working flow: i.e., training + testing

• training data and testing data are both pre-optimized plans obtained by DBMS

• the input of the model is a complete plan which corresponds to an input query

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

37

General LCMs vs. LCMs for query optimizer

• LCMs for query optimizers

• works as a value model, embedded in RL framework

• the input plan to the model may be not pre-optimized

• the input plan to the model can be a subplan
Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML Model

38

Learned Cost Models Ingredients

39Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

Training data collection

ML Model

Training data vital for ML models

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

ML models are

data-hungry

Training data collection

40

What is training data in LCMs?

➢How to find thousands of

SQL queries and plans?

➢How to obtain their label?

Training data collection

Data point Label

Estimated Cost

Runtime
SELECT * FROM …

Scan T1 Scan T2

Join

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
41

What is training data in LCMs?

➢How to find thousands of

SQL queries and plans?

➢How to obtain their label?

Training data collection

Data point Label

Estimated Cost

Runtime
SELECT * FROM …

Scan T1 Scan T2

Join

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
42

SQL queries

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Benchmarks Real user queries
Synthetic

query generators

43

SQL query generation for zero-shot model

− Data: 20 databases from real-world datasets & benchmarks

− Queries:

− Benchmark queries

− Workload generator
− Standard mode → SPJA queries with conjunctive predicates

− Complex mode → SPJA with disjunctive complex predicates (e.g., IN)

− Index mode → random indices in foreign keys and predicate columns

− Bonus: Workload traces (queries with runtimes)

Training data collection

SELECT * FROM …
SELECT * FROM …
SELECT * FROM …

SELECT * FROM …
SELECT * FROM …
SELECT * FROM …

1342ms
5307ms
2302ms

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

B. Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.

44

SQL query collection in Amazon Redshift

− Training data collected as queries run in production

− Sliding window (one query in, one out)

Training happens in the production cluster!

Training data collection

Mostly short-running queries

Catastrophic predictions for

long-running queries

Problem

Partition training set into

buckets, e.g.:
o Bucket 1: 0-10 sec

o Bucket 2: 10-30 sec etc.

Solution

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

G. Saxena et al. Auto-WLM: Machine Learning Enhanced Workload Management in Amazon Redshift. SIGMOD 2023.

45

Query plans from SQL workloads

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

SQL queries with

hints

SQL query

execution

SELECT * FROM …

HINT

SELECT * FROM …

Plan enumeration

Dynamic

programming
Dynamic

programming

For LCMs in QO only

Balsa, LTR

[Balsa] Z. Yang et al. Balsa: Learning a Query Optimizer Without Expert Demonstrations. SIGMOD 2022.

[LTR] H. Behr et al. Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization. BTW 2023.

[Neo] R. Marcus et al. Neo: a learned query optimizer. PVLDB 2019

[Bao] R. Marcus et al. Bao: Making Learned Query Optimization Practical. SIGMOD 2021.

[LOGER] T. Chen et al. LOGER: A Learned Optimizer Towards Generating Efficient and Robust Query Execution Plans. PVLDB 2023

Neo, Bao, LOGER

SELECT * FROM …

46

Scan T1 Scan T2

Join Scan T3

Join

Project

Use subplans

Query plan augmentation

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Scan T1 Scan T2

JoinJoin Scan T3

JoinJoin

Project

Cost=12346 Cost=12346

Change cardinalities

DB

S
E
L
E
C
T

*

F
R
O
M

…

Scan T1 Scan T2

Join

DB
Scan T2 Scan T1

Join
HINT

HINT

S
E
L
E
C
T

*

F
R
O
M

…

[Balsa] Z. Yang et al. Balsa: Learning a Query Optimizer

Without Expert Demonstrations. SIGMOD 2022.
R. Zhu et al. Balsa: Lero: A Learning-to-Rank Query

Optimizer. PVLDB 2023.

47

Synthetic plan generation with DataFarm

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Training data collection

48

Synthetic plan generation with DataFarm

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Learns real execution patterns

Generates new representative plans

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

49

Synthetic plan generation with DataFarm

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

50

Synthetic plan generation with DataFarm

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Training data collection

51

Synthetic plan generation with DataFarm

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Training data collection

52

Synthetic plan generation with DataFarm

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Training data collection

53

What is training data in LCMs?

➢Where to find thousands of

queries and plans?

➢How to obtain their label?

Training data collection

Data point Label

Estimated Cost

Runtime
SELECT * FROM …

Scan T1 Scan T2

Join

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
54

Runtime collection

Training data collection

Executing queries can be very time-consuming!

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
55

Runtime collection - examples

Training data collection

Zero-shot

3.9GB GB data

300k queries

PostgreSQL

10 days

DataFarm

1GB data

10k jobs

Flink

5 days

…

Extrapolated cost of 10,000 plans

with 1TB input data > 6 months*

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

B. Hilprecht et al. Zero-Shot Cost Models

for Out-of-the-box Learned Cost

Prediction. VLDB 2022.

F. Ventura et al. Expand your Training Limits!

Generating Training Data for ML-based Data

Management. SIGMOD 2021.

56

Label collection in DataFarm

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

57

Label collection in DataFarm

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Plan

Plan Instances

Plan Sample +

Real Runtime

Plan Instances with

Real and Forecasted Runtime

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.

R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’s Food! – Human-Guided Training Data Generation. CIDR 2022

R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

58

Learned Cost Models Ingredients

59Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Featurization

Training data collection

ML Model

Agenda

− LCMs in Batch Systems

− LCMs in Streaming Systems

− Road Ahead

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
60

Stream

Processing

System

▪ Take inputs: Continuous data from devices (cars/buses, health devices, card transactions,
social networks, sensors)

▪ AND Standing queries for monitoring (e.g., positions/speed/# of cars)

▪ Output: Continuous results on standing queries (time-series)

▪ Objectives: (often) low latency and high throughput

Data Stream Result Stream

61

What is Stream Processing in a Nutshell?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Query: Notify when average values of temperature is higher than 60°C

(in the last minute, for the last three sensor values, …)?

Stream

Processing

System

Input Stream Alerts/Result

tempStream

Stream Processing 101

t=1

temp=10

t=2

temp=11
t=3

temp=11.5

t=4

temp=14
… 61.8 62.1 …

62Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Stream Processing 101

1SELECT AVG(FtoC(temp)) as avgTempStream

FROM tempStream [ROWS 3, ADVANCE BY 1 MIN]

HAVING avgTemp > 60

Stream

Processing

System

Input Stream Alerts/Result

tempStream

1 Query expressed in CQL (continuous query language), a SQL-like query language for streaming.

63Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Queries are compiled into data flow graph (DFG) of stream operators

Stream Processing 101

Input Output

FtoC

SELECT AVG(FtoC(temp)) as avgTempStream

FROM tempStream [ROWS 3, ADVANCE BY 1 MIN]

HAVING avgTemp > 60

…
SI𝜔𝜎 𝜔𝜉SO 𝜔𝜎𝜔FtoC 𝜔𝜉SO 𝜔𝜎

Data Stream

𝜉 = avgSo = tempStream avgTemp > 60

64Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Poll

Can traditional cost models of databases

be adapted to estimate costs of data flow

graphs of streaming systems?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
65

Tutorial: Learned Cost Models for Query Optimization: From Batch to
Streaming Systems Image Source: ChatGPT - DALLE66

No Traditional Cost Models in Streaming!

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

[1] Hirzel, M., Soulé, R., Schneider, S., Gedik, B., & Grimm, R. (2014). A Catalog of Stream Processing Optimizations. ACM Computing Surveys (CSUR), 46(4).

[2] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache Flink : Stream and Batch Processing in a Single Engine. IEEE

Data Engineering Bulletin.

[1]

[2]

67

Using
Current
Streaming
Systems
Feels
Like

68Image Source: ChatGPT - DALLE

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Stream

Processing

System

Placement

?

Parallelism/

Parameter

tuning

?

…

Optimization Parameters in Stream Processing

σ

⨝

⨝

⨝

σ

?

DFG

selection

69

Manually

configures

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Expert Tuning in Streaming Systems

IoT infrastructure

70

Notify when average number of cars
on the street is greater than 60

Domain

Expert

Data

Engineer

Notification is

Latency-Critical!
Query Plan:

𝜔𝜉SO 𝜔𝜎

𝜉 = avg

Avg Cars

> 60

Extensive Tuning Needed!

→ Expert tuning to meet performance constraints

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Learned
Cost
Models
To the
Rescue

71Image Source: ChatGPT - DALLE

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Learned

Cost Model

Enables

Optimizations

Opportunity: LCMs Enabled Optimizations

72

σ

⨝

⨝

⨝

σ

>

DFG

selection
Placement

Place

on B

Parallelism/

parameter

tuning

p=2

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Challenges for LCMs for Streaming

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
73

Dynamic
data stream

Structured &
Unstructured

data

Continuous query
deployment on
heterogeneous

resource

G Rosinosky, D Schmitz, and E Rivière. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24

Challenges for LCMs for Streaming

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
74

Arrival rate

Data distribution

Skewness

Dynamic
data stream

Structured &
Unstructured

data

Continuous query
deployment on
heterogeneous

resource

G Rosinosky, D Schmitz, and E Rivière. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24

Challenges for LCMs for Streaming

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
75

Arrival rate

Data distribution

Dynamic
data stream

Structured &
Unstructured

data

Continuous query
deployment on
heterogeneous

resource

Streams contains:

logs JSON Files

Images Audio Video

IoT Sensors data

G Rosinosky, D Schmitz, and E Rivière. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24

Skewness

Challenges for LCMs for Streaming

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
76

Arrival rate

Data distribution

Dynamic
data stream

Structured &
Unstructured

data

Continuous query
deployment on
heterogeneous

resource

Streams contains:

logs JSON Files

Images Audio Video

IoT Sensors data

FPGA

Skewness

How existing LCMs deals with them?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
77

Structured &
Unstructured

data

Continuous query
deployment on
heterogeneous

resource

LCMs are (re)trained or

fine-tuned on dynamic data

Learn from feedback

loops (monitoring)

Dynamic
data stream

E.g., RL approaches like Decima

How existing LCMs deals with them?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
78

Dynamic
data stream

Continuous query
deployment on
heterogeneous

resource

Embed data into feature vectors

LCMs map features to

operator runtime costs

But, LCMs do not yet fully

understand unstructured data!

(not our focus here)

Structured &
Unstructured

data

LCMs are trained or fine-

tuned on dynamic data

Learn from feedback

loops (monitoring)

E.g., Regression models like Moira

How existing LCMs deals with them?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
79

Dynamic
data stream

Structured &
Unstructured

data

LCMs can guide placement

decisions
LCMs include hardware

descriptors

Embed data into feature vectors

LCMs map features to

operator runtime costs

LCMs are trained or fine-

tuned on dynamic data

Learn from feedback

loops (monitoring)

Continuous query
deployment on
heterogeneous

resource

E.g., Optimization oriented LCMs

like COSTREAM

ZeroTune Operator Parallelism GNNs ✓ ✓ ✓

COSTREAM Operator Placement GNNs ✓ ✓ ✓

Li et al.

2016
Operator Placement RL ✓ ✓

Decima Operator Placement RL ✓ ✓

Ni et al. Operator Placement RL ✓ ✓

Taxonomy of LCMs in Streaming

Model Intended Task
Model

Architecture

Input Features

Stream

Statistics

Hardware

Charact.

Hardware

Monitoring

Query

Plan

Moira
Cost Estimation

(latency, throughput)
SVM ✓ ✓

Imai et al.
Cost Estimation

(throughput)
Linear Reg. ✓ ✓

Li et al.

2014

Cost Estimation

(latency)
SVR ✓ ✓

Zero-shot
Cost Estimation

(latency, throughput)
GNNs ✓ ✓

General

LCMs

Optimization-

oriented
LCMs

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
80

Advantages

better accuracy (overfit to workload),

adapts online

Disadvantages

retraining required to deal with

workload drift

Generalizable LCM

(e.g., Zero-shot)

Transfer across workloads and hardware

- Use transferable features

- Shows high accuracy on unseen

workloads

Specialized LCM

(e.g. RL tuned for workload)

Optimize for a given workload/task

- Use runtime-driven features

- Shows high accuracy on known

workloads

Advantages

can better deal with workload drifts,

adaptable

Disadvantages

high (one-time) training effort

Generalization vs. Specialization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
81

VS

Era of Generalizable Cost Models for Streaming

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
82

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Zero-shot Cost Model in a Nutshell

Data Stream

…
SI𝜔𝜎 𝜔𝜉SO 𝜔𝜎

𝜔𝜎

𝜔𝜉SO

𝜔𝜎

1 GB RAM

256 GB RAM

1

2 Query Plan

3 Hardware

Hidden layers

In
p
u

t
la

y
e

r

…

x1

x2

xm

x3

O
u

tp
u
t
la

y
e
r

…

z1

z2

zm

z3

…

h1

h2

hn

h3

GNN model

Lp=42ms
Lp=232ms

Lp=932ms

Cost

Predictions
Latency, Throughput,

Backpressure, …

e.g. find

optimized
latency

R. Heinrich, C. Binnig, H. Kornmayer & M. Luthra, Costream: Learned Cost Model for Operator Placement in Edge-Cloud Environments, ICDE 2024.

P. Agnihotri, B. Koldehofe, P. Stiegele, R. Heinrich, C. Binnig & M. Luthra, ZeroTune: Learned Zero-Shot Cost Models for Parallelism Tuning, ICDE 2024.

83

Generalizable LCM

(e.g., Zero-shot)

Generalizable Models for Optimizations

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
84

Broad training dataset

𝜔𝜉
𝟏

𝜔𝜎
1 𝜔𝜎

2

…

…𝜔
⨝
1 𝜔

⨝
2

𝜔𝜎
𝟏

𝜔
⨝
1 𝜔

⨝
2

𝜔𝜉
𝟏

𝜔𝜎
𝟏

Data Stream

Query Workload

Hardware Resources

Zero-Shot Cost Model: Training

85

Training Zero-Shot Cost Model

1

…

• Filter function

• Window length

• CPU cores

…

• Event rate

…
…

• Parallelism degree

Transferable Features

Age > 10

Filter function “>” Filter literal data type

Filter literal value

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Broad training dataset
Transferable features and

query labels

Joint graph representation for data flows on

hardware

Latency: 2ms

Throughput: 50 ev/s

Labels

Parallelism: 1

Event rate: 500

Tuple width: 5

Parallelism: 2

CPU core: 16

Join key class: Int

Parallelism: 1

CPU core: 8

Agg. fn: Avg

So’

So 𝜔
⨝
2

𝜔
⨝
1

𝜔𝜉
𝟏

𝜔𝜎
1 𝜔𝜎

2

…

…𝜔
⨝
1 𝜔

⨝
2

𝜔𝜎
𝟏

𝜔
⨝
1 𝜔

⨝
2

𝜔𝜉
𝟏

𝜔𝜎
𝟏

Data Stream

Query Workload

Hardware Resources

86

Training Zero-Shot Cost Model

1

2

3

…

Operator instances-resource mapping

Data flow and partitioning
𝜔
𝜉
1

Zero-Shot Cost Model: Training

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Broad training dataset
Transferable features and

query labels

Novel joint graph representation for data

flows on hardware

Latency: 2ms

Throughput: 50 ev/s

Labels

Parallelism: 1

Event rate: 500

Tuple width: 5

Parallelism: 2

CPU core: 16

Join key class: Int

Parallelism: 1

CPU core: 8

Agg. fn: Avg

So’

So 𝜔
⨝
2

𝜔
⨝
1 𝜔

𝜉
1

Train Zero-Shot Cost Model

Multi-Layer Perceptrons (MLPs)

Hidden layers

In
p
u

t
la

ye
r

…

x1

x2

xm

x3

O
u

tp
u
t
la

y
e
r

…

z1

z2

zm

z3

…

h1

h2

hn

h3

Query Workload

Hardware Resources

87

Training Zero-Shot Cost Model

1

2

3

𝜔𝜉
𝟏

𝜔𝜎
1 𝜔𝜎

2

…

…𝜔
⨝
1 𝜔

⨝
2

𝜔𝜎
𝟏

𝜔
⨝
1 𝜔

⨝
2

𝜔𝜉
𝟏

𝜔𝜎
𝟏

Data Stream

…

Zero-Shot Cost Model: Training

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Hidden layers

In
p
u
t

la
y
e

r

…

x1

x2

xm

x3

O
u
tp

u
t
la

y
e
r

…

z1

z2

zm

z3

…

h1

h2

hn

h3

Trained Zero-Shot Cost Model

Optimizer

Prediction

Latency: 2ms

Tpt: 500 ev/s

Placement or

Parallelism

decisions

Constraints, e.g., max

parallelism degree

𝜔
⨝
1 𝜔

⨝
2

𝜔𝜉
𝟏

…

…

…

𝜔𝜉
𝟏

𝜔
⨝
1

𝜔𝜎
𝟏

𝜔𝜉
𝟐

𝜔
⨝
1 𝜔

⨝
2

𝜔
⨝
1

𝜔𝜉
𝟏

Unseen Feature Space

Zero-Shot Cost Model: Inference

Data Stream’

Query Workload’

Hardware Resources’

88

Inference and Optimization using Zero-Shot Cost Model

argmin 𝑤𝑡 . 𝐶𝐿 + 1 − 𝑤𝑡 . 𝐶𝑇
𝐶𝐿, 𝐶𝑇

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Interactive Demo

Learning Query Placement Costs with GNN

So’

So 𝜔
⨝
2

CPU: 4 cores

RAM: 1024 MB

Bandwidth: 20 MBps

Latency: 5 ms

Transferable features

Host

Encoder

[0.79]

[0.50]

[0.002]

…

Encodings

Join key: …

…

Join

Encoder
…

Event rate: …

…

Source

Encoder
…

Neural Encoding Novel Neural Message Passing

1. Message

passing from

operators to hosts

2. Message

passing from hosts

to operators

4. Message passing through operator graph

3. Message

passing between

(parallel)

resources

𝜔
⨝

Predicted Costs

Throughput: 25 ev/s,
E2E-Latency: 212ms

Final MLP

𝜔
⨝
1 𝜔

𝜉
1

89
Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Specialized Models in a Nutshell

So’

So 𝜔
⨝
2

𝜔
⨝
1 𝜔

𝜉
1

Placement Problem

So’

So 𝜔
⨝
2

𝜔
⨝
1 𝜔

𝜉
1

Scheduling

Learned Cost Model

Execution & Observation

Feedback Loop

Reward / Evaluation

Latency: 2ms

Throughput: 50 ev/s

Depending on QoS-

Requirements:

Is this a good

placement?

Intuition: Improving model over time for a given workload

by monitoring the results and iteratively updating the model

Advantages

No human interaction required as policy improves over time
Avoids the massive collection of training data

Disadvantages

Model gets tied towards seen workloads and does not generalize
Retraining required if workloads change

90
Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Specialized LCM

(e.g. RL tuned for workload)

Background: Reinforcement Learning

LCMs using Reinforcement Learning

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

H.Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh

Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM 2019.

• Learning an agent by interacting with the environment

• Learning policy over time: Which actions to take given

a system state?

• Assuming markov process: Actions are conditionally

independent of the past

Decima: Learning Scheduling Algorithms with RL

• For a given query an agent uses a GNN and a policy

network to come up with a schedule

• The schedule is executed on a spark cluster and observed

• The agent is updated by learning from a reward function of

the given placement

More approaches follow this idea:

- Moira (Foroni et al)

- Li et al

91

Decima: Learning Placement Costs

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Embeddings:

• per-node embedding (e)

• per query embeddings (y)

• global summary

Output:

• the score of the

schedule

• maximal

parallelism degree

Features:

• number of tasks within

operator

• average task duration

• number of executors

working on the node

• available local executors

H.Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh

Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM 2019.

92

Summary: LCMs for Stream Processing

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
93

Taxonomy on existing workRole of LCMs in Optimizing

Stream Processing Systems

Key Dimension:

Generalizability vs. Specialization

Specialized LCM

(e.g. RL tuned for workload)

Generalizable LCM

(e.g., Zero-shot)

Open problems for batch and streaming systems

• How can we collect the right labels efficiently?

• Do we need both optimal and non optimal query plans?

• How do we capture load fluctuations (streaming)?

Training Data Collection

• Which are the right models for query optimization?

• Which are the right metrics for LCMs beyond Q-error?

LCMs for Query Optimization

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
94

• Which is a right benchmark with fixed training/validation/testing split?

• What are good metrics that reflect the downstream task?

LCMs Evaluation

• Shall we aim for white-box models instead of NNs?

• What’s the trade-off between “accuracy” and interpretability?

• How do we explain the results stemming from a black-box LCM?

LCMs Interpretability & Explainability

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Open problems for batch and streaming systems

95

• How can we build LCMs that support batch-stream workloads,

commonly found in data lake settings?

• Do we need specialized LCMs per type, or could one be used?

LCMs for Hybrid Workloads

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Open problems for batch and streaming systems

96

Summary

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Learned Cost Models for Batch and Streaming Systems

97

	General intro
	Slide 1: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
	Slide 2: Presenters
	Slide 3: Why this Tutorial?
	Slide 4: What are Batch and Stream Systems?
	Slide 5: Emergence of Learned Cost Models
	Slide 6: Our Tutorial: Cost Models (in) Query Optimizers
	Slide 7: Agenda

	Batch processing
	Slide 8: Agenda
	Slide 9: What’s the ingredients of Learned Cost Models?
	Slide 10: Learned Cost Models Ingredients
	Slide 11: What features can we build?
	Slide 12: Query encoding
	Slide 13: Elements in a query
	Slide 14: Encode elements of a query
	Slide 15: Encode elements of a query
	Slide 16: Encode elements of a query
	Slide 17: Encode a query
	Slide 18: Encode a query
	Slide 19: Plan encoding
	Slide 20: How to encode a query plan
	Slide 21: How to encode a query plan
	Slide 22: How to encode a query plan
	Slide 23: Examples of plan encoding
	Slide 24: Examples of plan encoding
	Slide 25: Examples of plan encoding
	Slide 26: Cardinality & cost estimates
	Slide 27: DB statistics
	Slide 28: Notes on featurization
	Slide 29: Learned Cost Models Ingredients
	Slide 30: What kinds of models can we build?
	Slide 31: Cost models for tree-shape features
	Slide 32: Cost models for tree-shape features
	Slide 33: Cost models for tree-shape features
	Slide 34: Cost models for tree-shape features
	Slide 35: Cost models for graph-shape features
	Slide 36: General LCMs vs. LCMs for query optimizer
	Slide 37: General LCMs vs. LCMs for query optimizer
	Slide 38: General LCMs vs. LCMs for query optimizer
	Slide 39: Learned Cost Models Ingredients
	Slide 40: Training data vital for ML models
	Slide 41: What is training data in LCMs?
	Slide 42: What is training data in LCMs?
	Slide 43: SQL queries
	Slide 44: SQL query generation for zero-shot model
	Slide 45: SQL query collection in Amazon Redshift
	Slide 46: Query plans from SQL workloads
	Slide 47: Query plan augmentation
	Slide 48: Synthetic plan generation with DataFarm
	Slide 49: Synthetic plan generation with DataFarm
	Slide 50: Synthetic plan generation with DataFarm
	Slide 51: Synthetic plan generation with DataFarm
	Slide 52: Synthetic plan generation with DataFarm
	Slide 53: Synthetic plan generation with DataFarm
	Slide 54: What is training data in LCMs?
	Slide 55: Runtime collection
	Slide 56: Runtime collection - examples
	Slide 57: Label collection in DataFarm
	Slide 58: Label collection in DataFarm
	Slide 59: Learned Cost Models Ingredients

	Stream processing
	Slide 60: Agenda
	Slide 61: What is Stream Processing in a Nutshell?
	Slide 62: Stream Processing 101
	Slide 63: Stream Processing 101
	Slide 64: Stream Processing 101
	Slide 65: Poll
	Slide 66
	Slide 67: No Traditional Cost Models in Streaming!
	Slide 68
	Slide 69: Optimization Parameters in Stream Processing
	Slide 70: Expert Tuning in Streaming Systems
	Slide 71
	Slide 72: Opportunity: LCMs Enabled Optimizations
	Slide 73: Challenges for LCMs for Streaming
	Slide 74: Challenges for LCMs for Streaming
	Slide 75: Challenges for LCMs for Streaming
	Slide 76: Challenges for LCMs for Streaming
	Slide 77: How existing LCMs deals with them?
	Slide 78: How existing LCMs deals with them?
	Slide 79: How existing LCMs deals with them?
	Slide 80: Taxonomy of LCMs in Streaming
	Slide 81: Generalization vs. Specialization
	Slide 82: Era of Generalizable Cost Models for Streaming
	Slide 83
	Slide 84: Generalizable Models for Optimizations
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Learning Query Placement Costs with GNN
	Slide 90: Specialized Models in a Nutshell
	Slide 91: LCMs using Reinforcement Learning
	Slide 92: Decima: Learning Placement Costs
	Slide 93: Summary: LCMs for Stream Processing

	Conclusion
	Slide 94: Open problems for batch and streaming systems
	Slide 95: Open problems for batch and streaming systems
	Slide 96: Open problems for batch and streaming systems
	Slide 97: Summary

