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| Why this Tutorial?

No unified (batch & stream systems)
overview of Learned Cost Models for

query optimizers yet!

Spoiler: Batch systems
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Heinrich R, Luthra M, Wehrstein J, Kornmayer H, Binnig C: How Good are Learned Cost Models, Really?
Insights from Query Optimization Tasks, SIGMOD 2025
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| What are Batch and Stream Systems?

Database Management System Data Stream Management System

—> Answers

— Answers Data —

»

Differences in workloads mean very

different requirements for learned cost models
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| Emergence of Learned Cost Models

- Learned cost models: powerful tool overcoming limitations of traditional cost models

- Key ldea: Instead of relying on hand-crafted analytical models, let data and ML
guide the estimation
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Heinrich R, Luthra M, Wehrstein J, Kornmayer H, Binnig C: How Good are Learned Cost Models, Really?
Insights from Query Optimization Tasks, SIGMOD 2025
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| Our Tutorial: Cost Models (in) Query Optimizers
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| Agenda

- LCMs in Batch Systems
- LCMs in Streaming Systems

- Road Ahead
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| What's the ingredients of Learned Cost Models?

RECIPE
Learned Cost Model

—— 7

a
=
-}
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| Learned Cost Models Ingredients

Featurization

D Featurization

ML Model

|:| ML Model

Training data collection

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| What features can we build?

Featurization

Query Encoding

Plan Encoding

Cardinality/Cost Estimates

DB Statistics

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Query encoding

Featurization

- Given a query SQL statement, convert it into a feature vector, e.g.,

SELECT * FROM A, B, C
WHERE A.a = B.a AND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Elements in a query

o SELECT * FROM A, B, C
Featurization WHERE A.a = B.a AND B.b = C.b AND A.a < 51
GroupBy C.c OrderBy A.a;

- Major elements in a query to consider
- tables, columns, predicates, joins, aggregator (group by) /sorter (order by)

- Most of these elements are categorical variables
« one-hot
- multi-hot
- learnable embedding

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Encode elements of a query

Featurization SELECT_* FROM 3, B, C
WHERE |A.a'= B.a AND B.b = C.b AND A.a < 51

GroupBy C c OrderBy A.a;

Tables/columns: one-hot/multi-hot encoding
table set: (A, B, C, D] =>table “A™ [1, 0, 0, O]

columnset: [A.a, A.b, A.c, B.a, ..] =>column®a.a”:[1, 0, 0, 0, ...]

- if multiple tables/columns are involved, multi-hot is used
(A, B] =>[1, 1, 0, O]
[A.a, A.c] =>1[1, 0, 1, 0, 0, 0, ..]

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Encode elements of a query

: : .
Featurization SELECT FROM A, B, C o __ |
WHERE A.a = B.a AND B.b = C.b ANDIA.a < 51

GroupBy C.c OrderBy A.a;

Predicates (<column, predicate operator, value> triplet). €.g., "A.a < 517

concatenate: one-hot column + one-hot operator + value, or
directly one-hot encode the existence of a column predicate

A.a | A.b | A.c | B.a | ..
1 0 0 0

column predicates

obtain estimated selectivity of column predicates with histogram or bitmap
- eg., (1, 0, O, O, .., 1, ..17replacedby“[0.55, 0, 0, 0, .., 0.76, ..1"

semantic embedding: map a predicate to an embedding vector

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Encode elements of a query

Featurization SELECT & _EROM A, B, C
WHERE'A a = B.arAND B.b = C.b AND A.a < 51

GroupBy C.c OrderBy A.a;

- Joins:e.g.,"A.a = B.a’
- directly one-hot encode the joins: [0, 1]
- concatenate “a”, “A”, and “B”’s representation

- embedding

- Groupby or Orderby operators
- boolean indicator: 0/1 => the sql includes the operator or not

SELECT * FROM A, B, C
WHERE A.a = B a AND B.b = C.b AND A.a < 51

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Encode a query

Featurization

Encode a query:
- use element features individually

SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id =5
Tableset {[0101...0],[0010...1]} Joinset {[0010]} Predicateset {[100001000.72],]000100100.14]}

table id samples join id column id value operator id

* or concatenate the representation of considered elements

There is no consideration of the query/join graph structure!

Andreas Kipf et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. CIDR 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Encode a query

Featurization

Join graph: a table as a node and a join (e.g., A.a = B.a) as an edge

Adjacency matrix Graph embedding
SELECT * FROM A, B, C, D WHERE rA BCD E\ :ele:tﬂco;nté*)n Node attrjfu;gls_?m
A.3=C.3 AND A.4=D.4 BAND C.5=B.5 A0 9 1 1 0 AT Ry (4a)([Q 0 0)
AND B.2<5 AND B- 1270t Bloo1oe and  Aa2 - Cc2 @000 O /s
cliioee and  A.23 = D.d3 R,41{00O) |
and C.c4d = D.d4 ‘
D1 O 6060 and A.x1 >= 160 ﬁ’ﬁ::ﬁ :
E© © 0 00, and B.x2 <= 3.0 s
Join Graph and  C.x3 like "%cx+; | Re(axD(Q-O)
(a) An example of a select- (b) Construction of a join graph
E.l A.2 . B.1B.2 . E.1 E.ﬁ project-join query
0 1 .1 e .. © 0 r

Graph Transformer ) R(A)
VAN I RE G exe)
R©) [0 O
alexe)

Column Predicates

P11010060060601..10. 00]
Query-level Vector \

(i Embed the structure info of join graph into the query encoding!

Ryan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019. Tianyi Chen et al. LOGER: A Learned Optimizer Towards Generating

_ o _ Efficient and Robust Query Execution Plans. VLDB2023.
Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Plan encoding

SELECT * FROM A, B, C

WHERE A.a = B.a AND B.b = C.b AND A.a < 51

Featurization GroupBy C.c OrderBy A.a;

DBMS execute the query as per a tree-structured query plan.

scan

scan scan

scan  index scan  index scan scan
runtime: 13 ms runtime: 12235 ms runtime: 65242551 ms

) It is the execution plan that determines the cost of executing a query!

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| How to encode a query plan

Featurization
c
. . scan
Major elements in a query plan: B A
- operators, e.g., scan  index

— join operator: e.g., hash join(HJ), merge join (MJ), loop join (LJ)
- data access operator: e.g., index scan (index), seq scan (scan)
- aggregate (hash/stream)

- tables and columns to be joined

- join order: embodied by the tree structure in a bottom-up way

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| How to encode a query plan

Featurization

Procedures to encode a query plan:
1) encode the node:
« one-hot encode the operators
« aggregate other node features such as tables/columns (discussed before)

[0,1,0,0,0Q]

[11 01 01 Oa O]
[01 0! 0! 0’ 1]
® — (e
‘ scan scan
® [0,0,0,0, 1] ® & [0,0,0,1,0]
scan  index scan  index

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| How to encode a query plan

Featurization

2) exploit the structure info (multiple choices).
- flatten it into a vector with tree traversing algorithm, e.g., depth first searching
- preserve the tree shape for the subsequent tree-based NN
- extend it to a more informative structure such as a graph

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Examples of plan encoding

Featurization
Flat vector
[0,1,0,0,0]
[0,0,0,0,1]
o g Pre-order traversal
. " EmEe®e
scan
[0,0,0,0,1]’ .[0,0,0,1,01

scan index

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Examples of plan encoding

Featurization

Vector tree

ﬁﬁh B c D

1J|[6110061611a0]

\tﬁ@h B C D / Qﬁfﬂ B c D

[61100060110] K [boBo OB 10060 6]
(index)
& 28
weEA B C D A B ¢ D
(index)
&
“a‘ﬁa B C D @ﬁ‘?;“'qa B C D
[6OOOBOOBO 1 0]
_ n+¢++*n+ [bO1o60060066 O]
index i {scan) (scan)
table

Ryan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Keep the tree structure and take it into
the subsequent tree neural network
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| Examples of plan encoding

Featurization

Graph
reatures Xg

MIN(...) — Aggregate] opname: scan
/ cardg,t: 550k*

Hash Hash Jom width: 4

*Input from Data-
Seq ScanDrJ”e" i Besides the tree nodes, there
Scan | are more nodes like attributes
Teatures X7
| loperator: = and tab|eS
gJ reatures Xs
data type: integer

['Attrlbute Attrlbute Attribute ]

| seq

1 :
I Attribute

- B > | [features x;
- - . L relpages: 21
I ; Join Predicates ‘ Table

T T,
title movie _companies

Benjamin Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.
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| Cardinality & cost estimates

Featurization

- Obtain these estimates from traditional cost-based optimizer
- Incorporate these estimates into the plan encoding

& g B
B 5

S Fre o Sl Sy & S
[1, 8, 8, B, 6, ©, 8, 18, 8. 53] |Merge.]nn|| null | 8, @, 8, 8, ©, ©, 1, 8, 8.8]
S Ly & S P i b Frs s & &
[, &, 1, @, ©, &, 8, 258, 8.62] [e, 8, 8, &, 1, 8, @, 188, @. 32]
@s“iﬁ“ & & & PSS Fp e & S
fe. 0. 0. 1. 0. 0. o. =. o.=2) [ N - ©. °. °. gl Bao takes cardinality and cost
W o & x. ? (F"_ o . . .
[;‘E"ffg g A ‘i A fgr : ff;’_i e estimates into plan encoding

Ryan Marcus et al. Bao: Learning to Steer Query Optimizers. SIGMOD 2021.
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| DB statistics

Featurization

- Database statistics: histograms and sample bitmaps
- combine their usage with table/column encoding or predicate encoding

- Ofther statistical features from DB
« the number of rows in a table

- the number of unique values in a column
- the number of null values in a column

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Notes on featurization

Featurization

Transferability in the features: Feature selection:
DB-specific features such as some features may be redundant such as

table/column name/identifier which predicate encoding and cardinality
cannot transfer across DBs estimates |
transferable features such as card./cost query encoding only / plan encoding only

estimates and statistics / both encoding

| Plan encoding is often there! 1

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Learned Cost Models Ingredients

g Featurization

|:| ML Model

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| What kinds of models can we build?

ML Model

- Regression task: the target is runtime (more common)
- The architecture of cost models are related to the shape of input features

- Cost model for flat features:
- FlatVector [1] leverage a regression tree model

- An multi-layer perceptron (MLP) even can do this task or more competent design,
e.g., MSCN [2]

[1] Archana Ganapathi et al. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. ICDE 2009.
[2] Andreas Kipf et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. CIDR 2019.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Cost models for tree-shape features

ML Model

Cost model for tree-shape features:
the model aims to capture the useful relations in the tree structure of the input

the popular model architectures in LCMs: e.g.,
« treeLSTM
 treeCNN
« tree-based transformer

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Cost models for tree-shape features

ML Model

TreeLSTM

___________

’”"i:Zil:i:Zi:i:Zi:Zil:il:i:Zi:Zi:Zil:i:Z:Zi:Z'__’_’_’_’_’_’_’_’_’_’_’_’_r}‘_’_’_’:_’_’_’:’Iliilii:Zi:Zil:i:Zi::i::il:::il:i::i::i::___
Encoded Query Plan i Representation Layer
i I I
Mested Loop1 v . ]
21 ~—F/—3 { Representation | | Representation
Hash Join Index;Scan i MOdEl i | |
P . ! R G’HJ,J ‘&Fk iy e !
[ Hepraenta‘hon Flepraenta‘llan GaRo H
Hash Join Hash Join |} i Model . ; Model :
i GuRy GiRs &Ry [
£ AN z ~ ' Hmmat/ H}pmm | |Repres t;ti— :: entation |
7 B on m epresen ion | presentation 1
Seq Scan 4 Seq Scan Seq Scan Seq Scan : ;, Model | | i _ Model : _ Model
T T -TG:-&-‘

Ji Sun et al. An End-to-End Learning-based Cost Estimator. VLDB 2019.
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Each node in a plan
tree as a LSTM unit
and passing the state to
their parent node in
bottom-up way!
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| Cost models for tree-shape features

ML Model

TreeCNN

(o110) (wooon] [1wo1011] (0010 |
/ \ / \ Filter &

o G ° G (001001] [o020] (1001001 [1000011] 00010 (A r[_a

(a) Query trees (b) Features on each node i (c) Tree conv filters (d) Output

N  dynamic
pooling

treeConv filters slide in the plan tree to get a
Ryan Marcus et al. NEO: A Learned Query Optimizer. VLDB 2019. CO”VOlved representati on Of vector tree
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| Cost models for tree-shape features

ML Model

Tree-transformer

Height embedding similar to position
embedding in transformer records a
node’s position in a plan tree.

Yu Zhao et al. QueryFormer: A Tree Transformer Model for Query Plan
Representation. VLDB 2022.
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| Cost models for graph-shape features
ML Model

Cost model for graph-structured features: graph neural network (GNN)

Input: Hidden State of Root

_[\Iode (Captures entire Plan)
I 2100ms
o

Estimation MLP

Bottom-Up
Message Passing

bottom-up message passing
Benjamin Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| General LCMs vs. LCMs for query optimizer

ML Model

Architecture differences

Research Topic

| Existing Work | Architecture of Its Learned Cost Model

FlatVector RegressionTree
MSCN Deep multisets
End-to-End TreeLSTM
General LCMs QPP-Net TreeNN
QueryFormer Transformer
Zero-shot GNN
DACE Transformer
NEO Tree-CNN
RTOS Tree-LSTM
Bao Tree-CNN
Learned Query Optimizer Balsa Tree-CNN
HybridQO Tree-LSTM
LEON Tree-CNN
LOGER Tree-LSTM

General LCMs vary in the
model architectures, while
LCMs for query optimizers
mostly use tree-CNN or
tree-LSTM!

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| General LCMs vs. LCMs for query optimizer

ML Model

- Workflow differences
« General LCMs:

(A Workload Generation @ Execution © Feature & Label Extraction (D Training Phase @ Evaluation Phase

|- L Query Plans Query Runtimes
. . =* -5

| sELECT * FROM .. » Trainin - 3. Q56 132

IMDB ﬁ (. e (2 @a » %ﬁ RMSE: 425

II
| SELECT * FROM .. * »
| Data Characteristics Sample Bitmaps
0110001100101101
U | sELECT * FROM .. » Lu_ e Test data
01011111 00010010

« follow typical “two-stage” working flow: i.e., training + testing
« training data and testing data are both pre-optimized plans obtained by DBMS
» the input of the model is a complete plan which corresponds to an input query

Cost Model

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| General LCMs vs. LCMs for query optimizer

ML Model

- LCMs for query optimizers

, I "
' —®  Featurizer B :
| m
10 = P K
i
' 3 S Prediction | O S
1 G>> @] @© D 1
' = @ 3
] 2 = ® 0 S 1
) ) Ky ® = ®
" = ) < I
9 ATl
" I
1 i i
U o o o o o A A W ™~
» Latency
Selected plan = ®
®

Database Execution Engine

« works as a value model, embedded in RL framework
 the input plan to the model may be not pre-optimized
 the input plan to the model can be a subplan

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Learned Cost Models Ingredients

g Featurization
Q’ ML Model

Training data collection

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems 39



| Training data vital for ML models

Training data collection

ML models are
data-hungry

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| What is training data in LCMs?

Training data collection

Data point Label

\ ) ’
|
* FROM ... /U? )
SELECT O @ Runtime
Join e
Estimated Cost
ScanT1 Scan T2 o

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

»How to find thousands of
SQL queries and plans?

> How to obtain their label?
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| What is training data in LCMs?

Training data collection

Data point Label

\ ) ’
|
* FROM ... /U? )
SELECT O @ Runtime
Join e
Estimated Cost
ScanT1 Scan T2 o

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

»How to find thousands of
SQL queries and plans?

> How to obtain their label?
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| SQL queries

Training data collection

)

O
@@

Synthetic |
query generators Real user queries

Benchmarks

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| SQL query generation for zero-shot model

Training data collection

- Data: 20 databases from real-world datasets & benchmarks %%

- Queries:
- Benchmark queries .
- Workload generator Ey —————

- Standard mode - SPJA queries with conjunctive predicates
- Complex mode - SPJA with disjunctive complex predicates (e.g., IN)
- Index mode - random indices in foreign keys and predicate columns

- Bonus: Workload traces (queries with runtimes) |4_ —— 4‘:—“‘“‘\ aaaaaa
2302ms

SELECT * FROM ...

B. Hilprecht et al. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. VLDB 2022.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| SQL query collection in Amazon Redshift

Training data collection

- Training data collected as queries run in production
- Sliding window (one query in, one out)

Problem )

Mostly short-running queries

l

Catastrophic predictions for
long-running queries

Solution

Partition training set into
buckets, e.g.:

- Bucket 1: 0-10 sec

- Bucket 2: 10-30 sec etc.

r Training happens in the production cluster!

G. Saxena et al. Auto-WLM: Machine Learning Enhanced Workload Management in Amazon Redshift. SIGMOD 2023.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Query plans from SQL workloads

HINT

Training data collection ‘

For LCMs in QO only

SELECT * FROM .. SELECT * FROM .. SELECT * FROM ..

v
Dynamic Dynamic

!
<>
Ull programming  programming
: )
X
Balsa, LTR Neo, Bao, LOGER

SQL query SQL queries with Plan enumeration
execution hints

[Balsa] Z. Yang et al. Balsa: Learning a Query Optimizer Without Expert Demonstrations. SIGMOD 2022.

[LTR] H. Behr et al. Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization. BTW 2023.

[Neo] R. Marcus et al. Neo: a learned query optimizer. PVLDB 2019

[Bao] R. Marcus et al. Bao: Making Learned Query Optimization Practical. SIGMOD 2021.

[LOGER] T. Chen et al. LOGER: A Learned Optimizer Towards Generating Efficient and Robust Query Execution Plans. PVLDB 2023

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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Join Join

ScanT1 Scan T2 ScanT1 Scan T2
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| Query plan augmentation

Training data collection

Change cardinalities

Use subplans

SELECT * FROM ..

Project :
=
o
E
N ScanT1 Scan T2
Scan T3 -
O
]
=
[x]
9D]
Scan T2 ScanT1
o
Cost=12346 Cost=12346
[Balsa] Z. Yang et al. Balsa: Learning a Query Optimizer R. Zhu et al. Balsa: Lero: A Learning-to-Rank Query
Without Expert Demonstrations. SIGMOD 2022. Optimizer. PVLDB 2023.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems




| Synthetic plan generation with DataFarm

Training data collection

.
T
‘. ...............
Input Data Computing resources
[\
Real Workload . LACﬁV.e .
Metadata earning -
l - e Training Data
o
:!’
Abstract »
Plan Plan Label 3 ] Non—%xbescuted
Instantiator || Forecaster —> ?m ’
Generator »

kI | Executed job
$ E3 j

F. Ventura et al. Expand your Training Limits! Generating Training Data for ML-based Data Management. SIGMOD 2021.
R. van de Water. DataFarm: Farm Your ML-based Query Optimizer’'s Food!— Human-Guided Training Data Generation. CIDR 2022
R. van de Water. Farming Your ML-based Query Optimizer’s Food. ICDE 2022 (best demo award)

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Synthetic plan generation with DataFarm

Training data collection

Children Transition Matrix Parent Transition Matrix

1.0
. Data Sink [ 10 Data Sink oos |03
AT, Data Source 017 o.15 08 Data Source 08
0 o O Filter 0.09 .0_41 0.05 Filter Ncms 0.09 0.09 0.23 0.05 0.05
-~ &> >
o Q Q ' § Group by 0.02 0.04 0.27 0.1 0.65 S Group by 0.35 0.1 0.06 0.6%
0 Q E Join 0.06 0.14 0.17 0.11 § g Join 0.11 0.17 0.07 0.11 . 0.06 Il
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| Synthetic plan generation with DataFarm
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| Synthetic plan generation with DataFarm

Training data collection

Input Data Computing resources
A
Real Workload Activ.e .
Metadata Learning »
l - - Training Data
o
1025
Abstract Plan Label : i Non-executed
Plan — : — —_— jobs
Instantiator Forecaster J
Generator »
E [E) | Executed job
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| Synthetic plan generation with DataFarm

Training data collection

Database Manager
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| Synthetic plan generation with DataFarm
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Training data collection
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| What is training data in LCMs?

Training data collection

Data point Label

\ ) ’
|
* FROM ... /U? )
SELECT O @ Runtime
Join e
Estimated Cost
ScanT1 Scan T2 o

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

»\Where to find thousands of
gueries and plans?

> How to obtain their label?
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| Runtime collection

Training data collection

’ Executing queries can be very time-consuming!

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Runtime collection - examples

- _ 4 - Current practice ) 4
Training data collection —— Our solution
3 - = |deal cost
| @ Collected runtime
ZerO-ShOt DataFarm g ® Extrapolated runtime
a2
3.9GB GB data 1GB data .
300k queries 10k jobs - .
PostgreSQL Flink 5 - |
I| 1 Illlllll 1 IIIIIIII
102 103 104
# Executed Jobs (log scale)
10 days 5 days

Extrapolated cost of 10,000 plans
with 1TB input data > 6 months*

F. Ventura et al. Expand your Training Limits!
Generating Training Data for ML-based Data
Management. SIGMOD 2021.

B. Hilprecht et al. Zero-Shot Cost Models
for Out-of-the-box Learned Cost
Prediction. VLDB 2022.
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| Label collection in DataFarm

Training data collection

Input Data Computing resources
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| Label collection in DataFarm
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: (RECIPE |
| Learned Cost Models Ingredients E——

g Featurization
Q’ ML Model

Training data collection
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| Agenda

- LCMs in Batch Systems
- LCMs in Streaming Systems

- Road Ahead

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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I What is Stream Processing in a Nutshell?

Stream ‘

Processing | ¥
System

Data Stream

= Take inputs: Continuous data from devices (cars/buses, health devices, card transactions,
social networks, sensors)

= AND Standing queries for monitoring (e.g., positions/speed/# of cars)
= Output: Continuous results on standing queries (time-series)

= Objectives: (often) low latency and high throughput
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IStream Processing 101

Input Stream Stream Alerts/Result
| .)) OO )~ Processing H )
- System

tempStream
t=4 t=3 t=2 t=1 o
temp=14 temp=11.5 temp=11 temp=10

Query: Notify when average values of temperature is higher than 60°C
(in the last minute, for the last three sensor values, ...)?
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IStream Processing 101

| Input Stream Stream Alerts/Result
| .)) OO~ Processing H O
- System

tempStream

!SELECT AVG (FtoC(temp)) as avgTempStream
FROM tempStream [ROWS 3, ADVANCE BY 1 MIN]
HAVING avgTemp > 60

1 Query expressed in CQL (continuous query language), a SQL-like query language for streaming.
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| Stream Processing 101

Queries are compiled into data flow graph (DFG) of stream operators

SELECT AVG (FtoC(temp)) as avgTempStream
FROM tempStream [ROWS 3, ADVANCE BY 1 MIN]
HAVING avgTemp > 60

Input ‘OO‘ @ wFtoC —b w{‘— — wO' > SI Output

Data Stream
So = tempStream ¢ =avg avgTemp > 60

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Poll

Can traditional cost models of databases
be adapted to estimate costs of data flow

graphs of streaming systems?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| No Traditional Cost Models in Streaming!

A Catalog of Stream Processing Optimizations

MARTIN HlFlZElj, IBM Watson Research Center
ROBERT SOULE, University of Lugano

SCQTF SCHNEIDER, IBM Watson Research Center
BUGRA GEDIK, Bilkent University

ROBERT GRIMM, New York University

Avenues for future work. Finding the right sequence in which to apply optimiza-
tions is an interesting problem when there are variants of optimizations with complex
interactions. Furthermore, while there is literature with cost models for individual op-
timizations, extending those to work on multiple optimizations is challenging; in part,
that is because the existing cost models are usually sophisticated and cus . . . . .
for their optimization. Fur%hermore, models for opgmilz)ations must captu ApaChe Flink™:; Stream and Batch ProceSSlllg ma Slllgle Englne
istics not just of the application, but also of the system and the input dat
these characteristics accurately and with moderate cost is another aven

work Paris Carbone’ Stephan Ewen* Seif Haridi'
' Asterios Katsifodimos® Volker Markl" Kostas Tzoumas*
TKTH & SICS Sweden data Artisans “TU Berlin & DFKI
patisc,haridi@kth.se first@data-artisans.com first.]ast @tu-betlin.de

and interesting-property propagation. However, the arbitrary UDF-heavy DAGs that make up Flink's dataflow
programs do not allow a traditional optimizer to employ database techniques out of the box [17], since the

operators hide their semantics from the optimizer. For the same reason, cardinality and cost-estimation methods
are equally difficult to employ. Flink's runtime supports various execution strategies including repartition and

[2]

[1] Hirzel, M., Soulé, R., Schneider, S., Gedik, B., & Grimm, R. (2014). A Catalog of Stream Processing Optimizations. ACM Computing Surveys (CSUR), 46(4).

[2] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache Flink™ : Stream and Batch Processing in a Single Engine. |EEE
Data Engineering Bulletin.
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| Optimization Parameters in Stream Processing
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| Expert Tuning in Streaming Systems

Extensive Tuning Needed!
— EXxpert tuning to meet performance constraints

average number of ca

greater than 60
52) APACHE
STORM

Apache Flink
SpQI"”(\Z pache Flin
Streaming

Domain Data

N " loT infrastructure
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Learned
Cost
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| Opportunity: LCMs Enabled Optimizations

Place p=2
\“3“B L ¢, D] s (b
T = a M9 g
Placement Pa;r;l:::gts e":l DFG
P ] selection
tuning
f Enables
Optimizations
Learned
Cost Model
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| Challenges for LCMs for Streaming

Structured &

Dynamic Unstructured

data stream data

G Rosinosky, D Schmitz, and E Riviere. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24
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| Challenges for LCMs for Streaming

Arrival rate
Data distribution j\

Dynamic  Structured &

data stream Unstructured
data

Skewness L\

G Rosinosky, D Schmitz, and E Riviere. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24
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| Challenges for LCMs for Streaming
Arrival rate a Stream;ontains:

= {} [
Data distribution j\

Skewness_}E i -

logs JSON  Files

Structured &

Dynamic Unstructured
data stream data

loT Sensors data
i @ I

Images Audio Video

G Rosinosky, D Schmitz, and E Riviere. 2024. StreamBed: Capacity Planning for Stream Processing. DEBS '24
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| Challenges for LCMs for Streaming
Arrival rate E’ Streams contains:

= 2 {}
Data distribution j\ logs  JSON  Files

loT Sensors data
Al «& ];ﬂ

Images Audio Video

Structured &
Unstructured
data

Dynamic
data stream

Skewness_ls i -
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| How existing LCMs deals with them?

LCMs are (re)trained or ‘ E%@”

fine-tuned on dynamic data

Dynamic  Structured &

data stream Unstructured

Learn from feedback data

loops (monitoring)

C e J

E.g., RL approaches like Decima

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| How existing LCMs deals with them?

~gh
Embed data into feature vectors

‘ /'/b LCMs map features to
Structured & operator runtime costs
Dynamic Unstructured

data stream data

LCMs are trained or fine- m:ﬁg
tuned on dynamic data

Learn from feedback

But, LCMs do not yet fully
loops (monitoring)

understand unstructured data!
(not our focus here)

Continuous query
deployment on
heterogeneous
resource

E.g., Regression models like Moira

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| How existing LCMs deals with them?

6
Embed data into feature vectors
LCMs are trained or fine- ‘ ||||I E@”

tuned on dynamic data
‘ }/'a LCMs map features to
operator runtime costs

J

Structured &

Dynamic Unstructured
data stream data

Learn from feedback
loops (monitoring)

,/?\ LCMs can guide placement
ﬁ decisions

|||||

_» LCMs include hardware

descriptors

E.g., Optimization oriented LCMs
like COSTREAM
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| Taxonomy of LCMs in Streaming

Input Features

Model
Model Intended Task Architecture Stream S Hardware :JlflL: Hardware - ) Query O—0
Statistics S Charact. < F | Monitoring{ ~AE Plan
. Cost Estimation = | o
oo N4 N4
Moira (latency, throughput) ki S A
Imai et al. s IZsmE e T Linear Reg. : v v
General (throughput) oo Ig
LCMs Li et al Cost Estimation = Yy,
) oo o/ Y Y
2014 (latency) g SUR Z
Cost Estimation L
- 88 v v
o (latency, throughput) == ElE m
ZeroTune | Operator Parallelism ®-000 ' GNNs g:g v v v
COSTREAM | Operator Placement @_,E GNNs m v v v
Optimization- Li et al — J—
oriented | et al. Operator Placement @-%] | RL - v 4
2016 - Ead)
LCMs —_ s
Decima Operator Placement ~ @®-(-] RL 2 v v
Ni et al. Operator Placement ~ @=[<) | RL =) v v
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| Generalization vs. Specialization

Generalizable LCM Specialized LCM
(e.g., Zero-shot) VS (e.g. RL tuned for workload)
@ransfer across workloads and hardware Optimize for a given workload/task
- Use transferable features - Use runtime-driven features
- Shows high accuracy on unseen - Shows high accuracy on known
workloads workloads

Advantages
better accuracy (overfit to workload),

adapts online

Advantages
can better deal with workload drifts,
adaptable

X Disadvantages X Disadvantages
: L . retraining required to deal with
high (one-time) training effort workload drift

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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Zero-Shot Cost Models for Distributed Stream Processing

Roman Heinrich Manisha Luthra
DHBW Mannheim Technical University
of Darmstadt
ABSTRACT

This paper proposes a learned cost estimation model for Distributed
Stream Processing Systems (DSPS) with an aim to provide accurate
cost predictions of executing queries. A major premise of this work
is that the proposed learned model can generalize to the dynamics
of streaming workloads out-of-the-box. This means a model once
trained can accurately predict performance metrics such as latency
and throughput even if the characteristics of the data and workload

or the deployment of operators to hardware changes at runtime.

That way, the model can be used to solve tasks such as optimizing
the placement of operators to minimize the end-to-end latency of a
streaming query or maximize its throughput even under varying
conditions. Our evaluation on a well-known DSPS, Apache Storm,
shows that the model can predict accurately for unseen workloads
and queries while generalizing across real-world benchmarks.

CCS CONCEPTS

« Information systems — Stream management.

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

Harald Kornmayer Carsten Binnig
DHBW Mannheim Technical University of
Darmstadt & DFKI
Query and data plane
4 DSPS query "\ (" Data stream chgracterisﬂcs N
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QoS cost plane
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Figure 1: A DSPS has to provide guarantees in terms of one or more
quality-of-service (QoS) cost metrics such as latency and throughput.
The challenge is that DSPS serve a wide range of workloads on po-
tentially diverse hardware, which makes the cost estimation harder.

Typically, a DSPS provides QoS guarantees using optimization
mechanisms such as operator placement that usually monitors the
costs to decide on the mapping of operators to hardware as shown
in Figure 1 [2]. Moreover, frequent reconfigurations of the operator
nlacement are reauired based on the observed chanees of the work-

| Era of Generalizable Cost Models for Streaming
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Generalizable LCM

I Zero-shot Cost Model in a Nutshell (e.g., Zero-shot)

L,=932ms
> )

e.g. find
optimized
latency

GNN model Cost

Predictions
Latency, Throughput,
Backpressure, ...

Input layer

Output layer

Hidden layers

R. Heinrich, C. Binnig, H. Kornmayer & M. Luthra, Costream: Learned Cost Model for Operator Placement in Edge-Cloud Environments, ICDE 2024.
P. Agnihotri, B. Koldehofe, P. Stiegele, R. Heinrich, C. Binnig & M. Luthra, ZeroTune: Learned Zero-Shot Cost Models for Parallelism Tuning, ICDE 2024.
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| Generalizable Models for Optimizations

Generalizable Resource Allocation in
Stream Processing via Deep Reinforcement Learning

Xiang Ni,**
*Citadel
xiang.ni @citadel.cor]

Abstract

This paper considers the problem of re]
stream processing, where continuous dat
cessed in real time in a large distributed
system throughput, the resource allocatid
tions the computation tasks of a stream p:
computing devices must simultaneousl
distribution and minimize communicati
lem of graph partitioning is known to

crucial to practical streaming systems, 1
algorithms have been developed to find

lutions. In this paper, we present a gif
decoder framework to learn a generalizd
tion strategy that can properly dlsmbut

£ otroam aranho

COSTREAM: Learned Cost Model for Operator
Placement in Edge-Cloud Environments

Roman Heinrich
DHBW Mannheim

Abstract—In this work, wd
learned cost model for Distrib
that provides accurate predid
a streaming query in an ed
model can be used to find aj
across heterogeneous hardware|
in these environments. In our
COSTREAM can produce hig
the initial operator placement|
placements, queries, and hardy
optimize the placements of stred
up of around 21x can be achiq

I _INTR

ZEROTUNE: Learned Zero-Shot Cost Models
for Parallelism Tuning in Stream Processing

Pratyush Agnihotri*, Boris Koldehofe!, Paul Stiegele™)
*Technische Universitit Darmstadt, Technische Uniy

Abstract—This paper introduces ZEROTUNE, a novel cost
model for parallel and distributed stream processing that
can be used to effectively set initial parallelism degrees of
streaming queries. Unlike existing models, which rely ma-
jorly on online learning statistics that are non-transferable,
context-specific, and require extensive training, ZEROTUNE
proposes data-efficient zero-shot learning techniques that en-
able very accurate cost predictions without having observed
any query deployment. To overcome these challenges, we
propose ZErROTUNE, a graph neural network architecture
that can learn from the structural complexity of parallel
distributed stream processing systems, enabling them to
adapt to unseen workloads and hardware configurations. In
our experiments, we show when integrating ZEROTUNE in a
distributed streaming system such as Apache Flink, we can
accurately set the degree of parallelism, showing an average
speed-up of around 5x in comparison to existing approaches.

Index Terms—Zero-shot cost models, Parallelism tuning

v2 [cs.DC] 7 Jul 2025

Learning from the Past: Adaptive Parallelism
Tuning for Stream Processing Systems

Yuxing Han!, Lixiang Chen!?2,
Chengcheng Yang?,

!ByteDance Inc, “East China No

! {hanyuxing, chenlixiang.3608, wanghaoy
2¢eyang @dase.ecnu.edu.d

Abstract—Distributed stream processing sys(ems rely on the

1l ByteDance

dataflow model to define and Str jobs, or izi
computations as Directed Acyclic Graphs (DAGs) of operators.
Adjusting the parallelism of these operators is crucial to handling
fluctuating workloads efficiently while bal. i resource usage
and p ing perfor Hi i hods often fail
to eﬂ’ectively utilize execution Ilis(uries or l’u]ly exploit DAG struc-
tures, limiting their ability to identify bottlenecks and determine
the optimal parallelism. In this paper, we propose StreamTune,
a mwﬂ approach for adaptive parallelism tuning in stream
' Tune incorporates a pre-training and
ﬁne-(u.ning framework that leverages global knowledge from
historical execution data for job-specific parallelism tuning. In the
pre-training phase, StreamTune clusters the historical data with
Graph Edit Distance and pre-trains a Graph Neural Network-
based encoder per cluster to capture the correlation between
the operator parallelism, DAG structures, and the identified
operator-level bottlenecks. In the online tuning phase, Stream-
Tune iteratively refines operator parallelism recommendations
using an operator-level bottleneck prediction model enforced
with a monotonic constraint, which aligns with the observed

ion re]les on asynchmnous message passing, al]owmg
each operator to process data independently, achieving both
high throughput and fault tolerance. In real-world applications,
dataflow execution should accommodate fluctuating workload
characteristics, such as varying data arrival rates.
Traditionally, system engineers manage these fluctuations
by manually adjusting the parallelism of dataflow operators
to match different workload demands. This process involves
increasing the parallelism (i.e., scaling out) during peak pe-
riods to maintain performance and decreasing the parallelism
(i.e., scaling in) during off-peak times to conserve resources.
However, manual tuning is labor-intensive and error-prone,
which often results in suboptimal resource allocation. Inef-
fective adjustments might lead to over-provisioning during
periods of low demand, resulting in resource wastage; or
under-provisioning during sudden workload peaks, potentially
viplations of Service [ evel Ohiectives (ST.O<) [12] A

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems




I Zero-Shot Cost Model: Training

Training Zero-Shot Cost Model

Data Stream Transferable Features
000 -880- %- - Eventrate Filter function “>”  Filter |it9yta type
Query Workload « | Filter function > Age > 10
@ ; o . i
£ “fs" 1“{ 2 > Window length I
w:qwz wb_ wé_wg_ (Jz)[xlou[><1 oo

&N N N . Parazllelismdegree Filter literal value
fl :

Hardware Resources « CPU cores

G Broad training dataset

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems

85



| Zero-Shot Cost Model: Training

Training Zero-Shot Cost Model

Data Stream

Parallelism: 1 Parallelism: 2 Parallelism: 1
% Event rate: 500 || CPU core: 16 CPU core: 8
-0-00- o0 Tuple width: 5 Join key class: Int Agg. fn: Avg
+

So’
Query Workload \ ) ) 4 Data flow and partitioning
1 1 . w — )
N £
w

a)l 7/ 1777, )
/< If 1 l » So \'\' .," 2

2
1.2 1 1.2 W W coo
W W Wy Wgwg SN Lo >

& B ; \E ﬁ t \‘x ‘1 V' X 5/.
Operator instances-resource mapplng

Hardware Resources

Latency: 2ms
e Transferable features and _|_ Throughput: 50 ev/s

query labels Labels
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oint graph representation for data flows on
hardware

c Broad training dataset
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| Zero-Shot Cost Model: Training

Training Zero-Shot Cost Model

Data Stream

+

Query Workload

@5 )} Wy

/< g A
w?ii wi Wy why PP o0

+

Hardware Resources

0 Broad training dataset

Parallelism: 1
CPU core: 8
Agg. fn: Avg

Parallelism: 2
CPU core: 16
Join key class: Int

Parallelism: 1
Event rate: 500
Tuple width: 5

So’ \
\'\ 1 1

So / .
_ NI

Latency: 2ms

)
. A

v 7/
x ‘v €p

Labels

+

e Novel joint graph representation for data
flows on hardware

e Transferable features and
query labels
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Throughput: 50 ev/s
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Hidden layers

Train Zero-Shot Cost Model
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Data Stream’

+*§&

Interactive Demo

Constraints, e.g., max

;—2‘5" parallelism degree
Query Workload’ ~
PRI l
w} - L = Prediction
2 al)l »icl 5 = I Latency: 2ms »(OptimizerD
) Tpt: 500 ev/s
\ _"--Y“'"'""', — argmin [wt.CL + (1 — wt). CT]
Hidden layers Cp, Cr

Hardware Resources’

Trained Zero-Shot Cost Model
oo dhd il een
Unseen Feature Space

Placement o
Parallellsm
decisions
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| Learning Query Placement Costs with GNN

Neural Encoding Novel Neural Message Passing

Transferable features Encodings 1. Message 2. Message 3. Message
' i ing bet
CPU: 4 cores [0.79] passing from  passing from hosts passing between
_ operators to hosts to operators (parallel)
RAM: 1024 MB Host [0.50] feSOUrCes
Bandwidth: 20 MBps Encoder [0.002] .
Latency: 5 ms (= H H ==, .
: 4. Message passing through operator graph

Join key: ... Join

Encoder So’

\
w
A
P ‘\ C()l (1)1 :
, \ D & Predicted Costs
/)

Throughput: 25 ev/s,
E2E-Latency: 212ms

Event rate: ... Source PR | Final MLP
Encoder
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Specialized LCM

| Specialized Models in a Nutshell [ s R tuned forworkoas

Intuition: Improving model over time for a given workload
by monitoring the results and iteratively updating the model

Placement Problem Scheduling Execution & Observation Reward / Evaluation
Latency: 2ms

So’ So’
Throughput: 50 ev/s
\ [0)) — a)l \ 1, W gnp

1 S W 1
S0 :2 : # - 5 # So :{; : # Depending on QoS-

< Requirements:
Is this a good
s — lacement?
7 T Learned Cost Model L . P
‘ Feedback Loop '
Advantages ¥ Disadvantages
No human interaction required as policy improves over time Model gets tied towards seen workloads and does not generalize

Avoids the massive collection of training data Retraining required if workloads change
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I LCMs using Reinforcement Learning

Background: Reinforcement Learning Decima: Learning Scheduling Algorithms with RL
l Reward r; | Reward
Agent Policy State Scheduling Agent Schedulable Objective
119(8 ; ak) ? @) Nodes Environment
State | Neural , , Graph Policy R
s, M etwork . Take action ay R Environment JobDAG 1 Job DAG n N’E“;E:L -~ Iw::egt;.';;k A Spoﬁzz
Y ‘%3 @?Dj (§5.1) :
Parameter 6 L) j—-'
Executor 1 Executor m
Observe state s, [ Observation of jobs and cluster status
« Learning an agent by interacting with the environment « For a given query an agent uses a GNN and a policy
* Learning policy over time: Which actions to take given network to come up with a schedule
a system state? « The schedule is executed on a spark cluster and observed

* Assuming markov process: Actions are conditionally The agent is updated by learning from a reward function of
independent of the past the given placement

More approaches follow this idea:
H.Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh - Moira (Foroni et aI)
Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM 2019. Li ot al

-Llelta
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I Decima: Learning Placement Costs

Features: Graph Neural Network (§5.1)
i e G Stage selection (§5.2)
* number of tasks within x! E Message P(node)
operator "] Passing —() — -
. I
 average task duration . T o £)
1 L ]
« number of executors \ DAG g . e
working on the node JobDAG 1! |Summary ® s v =
« available local executors : 1 L0 Q@ *= | Output:
3
. ! 2. | e« the score of the
- : Global =
. : Summary - /,O 8“ schedule
; ¥ % L] F—— = max“nlgl .

. ' : arallelism degree
Embeddings: | DAG Y ~§ Pimitjob) P g
« per-node embedding (e) _~""| summary I;’aratllellsn;

* per query embeddings (y) 1 ‘g’; i OC 'm('§;2)’°
 global summary Mess.age 3 :
Job DAG n . Passing < \O

H.Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh
Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM 2019.
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| Summary: LCMs for Stream Processing

Place p=2
/ onB
.on a . ™
= -
. 3} Paralleli
Placement p:_:n:e';_:" DFG
tuning selection

Enables
Optimizations

Learned
Cost Model

Role of LCMs in Optimizing
Stream Processing Systems

. Input Features
Mode) Intonded Task Architecture  Stream 5 Hardware Hardware Query
Statistics S Charact. Monitoring: Pian (O
t Estimat .,
later ughput) SVM M X 4
t A
. Linear Reg. |/ v v
General ?9 eer A IL
LCMs 5
o
Cost Estimation
(latency, throughput) ows I3
eeeeeeee Operator Parallelism @000 GNNs 3
COSTREAM  Operator Placement G-z GNNs 10
Optimization- =
oriented  Lietal.  Operator Placement  .[5| RL
LCM:
Decima  Operator Placement  ,[5] ' RL
Nietal.  OperatorPlacement .5 RL

Taxonomy on existing work
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Generalizable LCM
(e.g., Zero-shot)

Specialized LCM
(e.g. RL tuned for workload)

Key Dimension:
Generalizability vs. Specialization
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| Open problems for batch and streaming systems

Training Data Collection

How can we collect the right labels efficiently?
Do we need both optimal and non optimal query plans?
How do we capture load fluctuations (streaming)?

LCMs for Query Optimization

 Which are the right models for query optimization?
» Which are the right metrics for LCMs beyond Q-error?
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| Open problems for batch and streaming system
. _ iy

LCMs Evaluation

 Which is a right benchmark with fixed training/validation/testing split?

 What are good metrics that reflect the downstream task?

LCMs Interpretability & Explainability

Shall we aim for white-box models instead of NNs?
What’s the trade-off between “accuracy” and interpretability?
How do we explain the results stemming from a black-box LCM?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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| Open problems for batch and streaming systems

LCMs for Hybrid Workloads ( v

 How can we build LCMs that support batch-stream workloads,
commonly found in data lake settings?

Do we need specialized LCMs per type, or could one be used?

Tutorial: Learned Cost Models for Query Optimization: From Batch to Streaming Systems
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Learned Cost Models for Batch and Streaming Systems

g Featurization

[

3 1101010

Data Characteristics

[

W

» 308

N
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Runtime: Runtime:
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C. Evaluation Phase

- 42 Lw

g Model architecture

Training data collection

Generalizable LCM
(e.g., Zero-shot)
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Specialized LCM
| (e.g. RL tuned for workload) |
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