

What has a Learned Cost Model (LCM) really learned?

Motivation: LCMs Behave as a Black-Box

- Learned Cost Models (LCMs) predict query execution costs.
- LCMs show highly promising results, often outperforming classical models.
- However, LCMs are trained with deep learning and thus behave as **black box** in their predictions
- The black-box nature of LCMs makes it difficult to understand why and how they came up with given results

It is unclear why LCMs mispredict query execution costs – because they act as a black-box during prediction

Contribution: Making LCMs Explainable

- Highlighting what the LCM has learned by showing the **importance** of the **nodes** (=query operators) during GNN inference.
- Analyzing how well existing explainers (e.g. GNNExplainer) can help.
- Using gradient-based explainers and feature-based explainers by adapting node masking for Zero-Shot cost models.

Introducing **novel metrics**:

- Node Ranking. What node was most important?
- Runtime Correlation: How much do the importance scores correspond to the actual runtimes?
- Explanation Quality: How good is the explanation?

Our Idea: Show what LCMs have really learned by visualizing how important is a given node for the final prediction

Interactive Demo

Visualizing node importance scores of Learned Cost Models

nitial Results

Often, the node importance scores match with the actual operator runtimes.

- Sometimes, LCMs tends to model puts too much emphasis on aggregation nodes!
- Still, LCMs often achieve good predictions despite incorrect assumptions

- Exploring more explainer algorithms and LCM architectures
- Take feature importance and subgraph importance into account as well

Paper

Code