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of traditional approaches | learning paradigms and featurizations
L.CMS learn from prev101if quer;;l execu’ilons LCMs were trained on up to 200.000 SPAJ
LCMs are more precise than traditiona - :

approaches! Do LCMs provide better plan selections? Queries from 20 different databases

Evaluating 7 state-of-the art Learned Cost
Models against PostgreSQLs cost model

Task 1: Join Ordering Which order of joins 1s Requirement for Cost Models:
] optimal for a given query? Rank between different join orders

Method: Exhaustively iterate over all join orders of JOB-Light queries. Let cost models predict and analyze their predictions and plan selections.
Example: Predict Runtime for all possible Join Orders of JOB-Light Query Nr 33 Results over all JOB-Light Queries
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Traditional Models are outperforming LCMs for join ordering ... even 1f LCMs have access to actual cardinalities

. - How to optimally access Requirement for Cost Models:
Task 2: Access Path Selection a given table? Decide between Sequential Access and Index Look-Up

Method: Compare predictions for IndexScan and Sequential Scan. Let cost models predict and analyze their predictions and plan selections.

Example: Find Optimal Access Path for column title.production_year Results Over Whole Selectivity Range

SELECT (*) FROM title WHERE..
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Traditional Models are outperforming LCMs for access path selection. They prefer IndexScans too often.

. - - What 1s the optimal join Requirement for Cost Models:
Task 3: Join Operator Selection operator implementation? Select between join algorithms (Hash, Sort, NestedLoop)

Method: Compare predictions different join implementations. Let cost models predict and analyze their predictions and plan selections.

Example: Select Join Operator for a Two-Way Join Query Full Results over Three Datasets
SELECT COUNT(*) FROM title, movie info
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LCMs do less often pick the correct join operator than traditional approaches. This leads to longer execution runtimes.

What do we learn? How can we 1mprove?

Don't Look Only at Estimation Accuracy - but at the Plan Selection! Overcoming the Tyaininlg ]?ata Bfias o
 Evaluate and optimize your model against plan selection * Current strategies only learn irom the plans

_ . . : provided and selected by PostgreSQL
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« Example: Fine-tuning for Access Path Selection
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Recommendations for Model Design:
Learning form Query Plans, not only from SQL
Simple model architectures are often on par with complex models
DB-agnostic (i.e. zero-shot/global) models achieved the best results
Histograms and sample bitmaps do not show significant benefits
Don't throw expert knowledge away — models using Postgres
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